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SYSTEMAND METHOD FOR CLEANING 
NOSY GENETIC DATA FROM TARGET 

INDIVIDUALS USING GENETIC DATA FROM 
GENETICALLY RELATED INDIVIDUALS 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. Utility applica 
tion Ser. No. 1 1/603,406, filed Nov. 22, 2006, which claims 
the benefit under 35 U.S.C. S 119(e) of the following U.S. 
Provisional Patent Application Ser. No. 60/739,882, filed 
Nov. 26, 2005: Ser. No. 60/742,305, filed Dec. 6, 2005: Ser. 
No. 60/754,396, filed Dec. 29, 2005: Ser. No. 60/774,976, 
filed Feb. 21, 2006; Ser. No. 60/789,506, filed Apr. 4, 2006; 
Ser. No. 60/817,741, filed Jun. 30, 2006; and Ser. No. 60/846, 
610, filed Sep. 22, 2006; the disclosures thereof are each 
incorporated by reference herein in their entirety. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The invention relates generally to the field of acquiring, 

manipulating and using genetic data for medically predictive 
purposes, and specifically to a system in which imperfectly 
measured genetic data is made more precise by using known 
genetic data of genetically related individuals, thereby allow 
ing more effective identification of genetic irregularities that 
could result in various phenotypic outcomes. 

2. Description of the Related Art 
Current methods of prenatal diagnosis can alert physicians 

and parents to abnormalities in growing fetuses. Without 
prenatal diagnosis, one in 50 babies is born with serious 
physical or mental handicap, and as many as one in 30 will 
have some form of congenital malformation. Unfortunately, 
standard methods require invasive testing and carry a roughly 
1 percent risk of miscarriage. These methods include amnio 
centesis, chorion villus biopsy and fetal blood sampling. Of 
these, amniocentesis is the most common procedure; in 2003, 
it was performed in approximately 3% of all pregnancies, 
though its frequency of use has been decreasing over the past 
decade and a half. A major drawback of prenatal diagnosis is 
that given the limited courses of action once an abnormality 
has been detected, it is only valuable and ethical to test for 
very serious defects. As result, prenatal diagnosis is typically 
only attempted in cases of high-risk pregnancies, where the 
elevated chance of a defect combined with the seriousness of 
the potential abnormality outweighs the risks. A need exists 
for a method of prenatal diagnosis that mitigates these risks. 

It has recently been discovered that cell-free fetal DNA and 
intact fetal cells can enter maternal blood circulation. Conse 
quently, analysis of these cells can allow early Non-Invasive 
Prenatal Genetic Diagnosis (NIPGD). A key challenge in 
using NIPGD is the task of identifying and extracting fetal 
cells or nucleic acids from the mother's blood. The fetal cell 
concentration in maternal blood depends on the stage of preg 
nancy and the condition of the fetus, but estimates range from 
one to forty fetal cells in every milliliter of maternal blood, or 
less than one fetal cell per 100,000 maternal nucleated cells. 
Current techniques are able to isolate Small quantities offetal 
cells from the mother's blood, although it is very difficult to 
enrich the fetal cells to purity in any quantity. The most 
effective technique in this context involves the use of mono 
clonal antibodies, but other techniques used to isolate fetal 
cells include density centrifugation, selective lysis of adult 
erythrocytes, and FACS. Fetal DNA isolation has been dem 
onstrated using PCR amplification using primers with fetal 
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specific DNA sequences. Since only tens of molecules of each 
embryonic SNP are available through these techniques, the 
genotyping of the fetal tissue with high fidelity is not cur 
rently possible. 
Much research has been done towards the use of pre 

implantation genetic diagnosis (PGD) as an alternative to 
classical prenatal diagnosis of inherited disease. Most PGD 
today focuses on high-level chromosomal abnormalities Such 
as aneuploidy and balanced translocations with the primary 
outcomes being Successful implantation and a take-home 
baby. A need exists for a method for more extensive genotyp 
ing of embryos at the pre-implantation stage. The number of 
known disease associated genetic alleles is currently at 389 
according to OMIM and steadily climbing. Consequently, it 
is becoming increasingly relevant to analyze multiple embry 
onic SNPs that are associated with disease phenotypes. A 
clear advantage of pre-implantation genetic diagnosis over 
prenatal diagnosis is that it avoids some of the ethical issues 
regarding possible choices of action once undesirable pheno 
types have been detected. 
Many techniques exist for isolating single cells. The FACS 

machine has a variety of applications; one important applica 
tion is to discriminate between cells based on size, shape and 
overall DNA content. The FACS machine can be set to sort 
single cells into any desired container. Many different groups 
have used single cell DNA analysis for a number of applica 
tions, including prenatal genetic diagnosis, recombination 
studies, and analysis of chromosomal imbalances. Single 
sperm genotyping has been used previously for forensic 
analysis of sperm samples (to decrease problems arising from 
mixed samples) and for single-cell recombination studies. 

Isolation of single cells from human embryos, while highly 
technical, is now routine in in vitro fertilization clinics. To 
date, the vast majority of prenatal diagnoses have used fluo 
rescent in situ hybridization (FISH), which can determine 
large chromosomal aberrations (such as Down syndrome, or 
trisomy 21) and PCR/electrophoresis, which can determine a 
handful of SNPs or other allele calls. Both polar bodies and 
blastomeres have been isolated with success. It is critical to 
isolate single blastomeres without compromising embryonic 
integrity. The most common technique is to remove single 
blastomeres from day 3 embryos (6 or 8 cell stage). Embryos 
are transferred to a special cell culture medium (standard 
culture medium lacking calcium and magnesium), and a hole 
is introduced into the Zona pellucida using an acidic solution, 
laser, or mechanical drilling. The technician then uses a 
biopsy pipette to remove a single visible nucleus. Clinical 
studies have demonstrated that this process does not decrease 
implantation Success, since at this stage embryonic cells are 
undifferentiated. 

There are three major methods available for whole genome 
amplification (WGA): ligation-mediated PCR (LM-PCR), 
degenerate oligonucleotide primer PCR (DOP-PCR), and 
multiple displacement amplification (MDA). In LM-PCR, 
short DNA sequences called adapters are ligated to bluntends 
of DNA. These adapters contain universal amplification 
sequences, which are used to amplify the DNA by PCR. In 
DOP-PCR, random primers that also contain universal ampli 
fication sequences are used in a first round of annealing and 
PCR. Then, a second round of PCR is used to amplify the 
sequences further with the universal primer sequences. 
Finally, MDA uses the phi-29 polymerase, which is a highly 
processive and non-specific enzyme that replicates DNA and 
has been used for single-cell analysis. Of the three methods, 
DOP-PCR reliably produces large quantities of DNA from 
Small quantities of DNA, including single copies of chromo 
somes. On the other hand, MDA is the fastest method, pro 
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ducing hundred-fold amplification of DNA in a few hours. 
The major limitations to amplification material from a single 
cells are (1) necessity of using extremely dilute DNA con 
centrations or extremely small Volume of reaction mixture, 
and (2) difficulty of reliably dissociating DNA from proteins 
across the whole genome. Regardless, single-cell whole 
genome amplification has been used Successfully for a variety 
of applications for a number of years. 

There are numerous difficulties in using DNA amplifica 
tion in these contexts. Amplification of single-cell DNA (or 
DNA from a small number of cells, or from smaller amounts 
of DNA) by PCR can fail completely, as reported in 5-10% of 
the cases. This is often due to contamination of the DNA, the 
loss of the cell, its DNA, or accessibility of the DNA during 
the PCR reaction. Other sources of error that may arise in 
measuring the embryonic DNA by amplification and microar 
ray analysis include transcription errors introduced by the 
DNA polymerase where a particular nucleotide is incorrectly 
copied during PCR, and microarray reading errors due to 
imperfect hybridization on the array. The biggest problem, 
however, remains allele drop-out (ADO) defined as the failure 
to amplify one of the two alleles in a heterozygous cell. ADO 
can affect up to more than 40% of amplifications and has 
already caused PGD misdiagnoses. ADO becomes a health 
issue especially in the case of a dominant disease, where the 
failure to amplify can lead to implantation of an affected 
embryo. The need for more than one set of primers per each 
marker (in heterozygotes) complicate the PCR process. 
Therefore, more reliable PCR assays are being developed 
based on understanding the ADO origin. Reaction conditions 
for single-cell amplifications are under study. The amplicon 
size, the amount of DNA degradation, freezing and thawing, 
and the PCR program and conditions can each influence the 
rate of ADO. 

All those techniques, however, depend on the minute DNA 
amount available for amplification in the single cell. This 
process is often accompanied by contamination. Proper ster 
ile conditions and microsatellite sizing can exclude the 
chance of contaminant DNA as microsatellite analysis 
detected only in parental alleles exclude contamination. Stud 
ies to reliably transfer molecular diagnostic protocols to the 
single-cell level have been recently pursued using first-round 
multiplex PCR of microsatellite markers, followed by real 
time PCR and microsatellite sizing to exclude chance con 
tamination. Multiplex PCR allows for the amplification of 
multiple fragments in a single reaction, a crucial requirement 
in the single-cell DNA analysis. Although conventional PCR 
was the first method used in PGD, fluorescence in situ hybrid 
ization (FISH) is now common. It is a delicate visual assay 
that allows the detection of nucleic acid within undisturbed 
cellular and tissue architecture. It relies firstly on the fixation 
of the cells to be analyzed. Consequently, optimization of the 
fixation and storage condition of the sample is needed, espe 
cially for single-cell Suspensions. 

Advanced technologies that enable the diagnosis of a num 
ber of diseases at the single-cell level include interphase 
chromosome conversion, comparative genomic hybridiza 
tion (CGH), fluorescent PCR, and whole genome amplifica 
tion. The reliability of the data generated by all of these 
techniques rely on the quality of the DNA preparation. PGD 
is also costly, consequently there is a need for less expensive 
approaches, such as mini-sequencing. Unlike most mutation 
detection techniques, mini-sequencing permits analysis of 
very small DNA fragments with low ADO rate. Better meth 
ods for the preparation of single-cell DNA for amplification 
and PGD are therefore needed and are under study. The more 
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4 
novel microarrays and comparative genomic hybridization 
techniques, still ultimately rely on the quality of the DNA 
under analysis. 

Several techniques are in development to measure multiple 
SNPs on the DNA of a small number of cells, a single cell (for 
example, a blastomere), a small number of chromosomes, or 
from fragments of DNA. There are techniques that use Poly 
merase Chain Reaction (PCR), followed by microarray geno 
typing analysis. Some PCR-based techniques include whole 
genome amplification (WGA) techniques such as multiple 
displacement amplification (MDA), and MOLECULAR 
INVERSION PROBES (MIPs) that perform genotyping 
using multiple tagged oligonucleotides that may then be 
amplified using PCR with a singe pair of primers. An example 
of a non-PCR based technique is fluorescence in situ hybrid 
ization (FISH). It is apparent that the techniques will be 
severely error-prone due to the limited amount of genetic 
material which will exacerbate the impact of effects such as 
allele drop-outs, imperfect hybridization, and contamination. 
Many techniques exist which provide genotyping data. 

TAOMAN is a unique genotyping technology produced and 
distributed by Applied Biosystems. TAOMAN uses poly 
merase chain reaction (PCR) to amplify sequences of interest. 
During PCR cycling, an allele specific minor groove binder 
(MGB) probe hybridizes to amplified sequences. Strand syn 
thesis by the polymerase enzymes releases reporter dyes 
linked to the MGB probes, and then the TAQMAN optical 
readers detect the dyes. In this manner, TAQMAN achieves 
quantitative allelic discrimination. Compared with array 
based genotyping technologies, TAOMAN is quite expensive 
per reaction (S0.40/reaction), and throughput is relatively low 
(384 genotypes per run). While only ing of DNA per reaction 
is necessary, thousands of genotypes by TAOMAN requires 
microgram quantities of DNA, so TAOMAN does not neces 
sarily use less DNA than microarrays. However, with respect 
to the IVF genotyping workflow, TAQMAN is the most 
readily applicable technology. This is due to the high reliabil 
ity of the assays and, most importantly, the speed and ease of 
the assay (~3 hours per run and minimal molecular biological 
steps). Also unlike many array technologies (such as 500 k 
AFFMETRIX arrays), TAQMAN is highly customizable, 
which is important for the IVF market. Further, TAQMAN is 
highly quantitative, so anueploidies could be detected with 
this technology alone. 
ILLUMINA has recently emerged as a leader in high 

throughput genotyping. Unlike AFFMETRIX, ILLUMINA 
genotyping arrays do not rely exclusively on hybridization. 
Instead, ILLUMINA technology uses an allele-specific DNA 
extension step, which is much more sensitive and specific 
than hybridization alone, for the original sequence detection. 
Then, all of these alleles are amplified in multiplex by PCR, 
and then these products hybridized to bead arrays. The beads 
on these arrays contain unique "address’ tags, not native 
sequence, so this hybridization is highly specific and sensi 
tive. Alleles are then called by quantitative scanning of the 
bead arrays. The Illumina GOLDEN GATE assay system 
genotypes up to 1536 loci concurrently, so the throughput is 
better than TAQMAN but not as high as AFFMETRIX 500k 
arrays. The cost of ILLUMINA genotypes is lower than TAQ 
MAN, but higher than AFFMETRIX arrays. Also, the ILLU 
MINA platform takes as long to complete as the 500 k 
AFFMETRIX arrays (up to 72 hours), which is problematic 
for IVF genotyping. However, ILLUMINA has a much better 
call rate, and the assay is quantitative, so anueploidies are 
detectable with this technology. ILLUMINA technology is 
much more flexible in choice of SNPs than 500 k AFFME 
TRIX arrays. 
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One of the highest throughput techniques, which allows for 
the measurement of up to 250,000 SNPs at a time, is the 
AFFMETRIX GeneChip 500K genotyping array. This tech 
nique also uses PCR, followed by analysis by hybridization 
and detection of the amplified DNA sequences to DNA 
probes, chemically synthesized at different locations on a 
quartz, Surface. A disadvantage of these arrays are the low 
flexibility and the lower sensitivity. There are modified 
approaches that can increase selectivity, Such as the “perfect 
match” and “mismatch probe' approaches, but these do so at 
the cost of the number of SNPs calls per array. 

Pyrosequencing, or sequencing by synthesis, can also be 
used for genotyping and SNP analysis. The main advantages 
to pyrosequencing include an extremely fast turnaround and 
unambiguous SNP calls, however, the assay is not currently 
conducive to high-throughput parallel analysis. PCR fol 
lowed by gel electrophoresis is an exceedingly simple tech 
nique that has met the most Success in preimplantation diag 
nosis. In this technique, researchers use nested PCR to 
amplify short sequences of interest. Then, they run these 
DNA samples on a special gel to visualize the PCR products. 
Different bases have different molecular weights, so one can 
determine base content based on how fast the product runs in 
the gel. This technique is low-throughput and requires Sub 
jective analyses by Scientists using current technologies, but 
has the advantage of speed (1–2 hours of PCR, 1 hour of gel 
electrophoresis). For this reason, it has been used previously 
for prenatal genotyping for a myriad of diseases, including: 
thalassaemia, neurofibromatosis type 2, leukocyte adhesion 
deficiency type I, Hallopeau-Siemens disease, sickle-cell 
anemia, retinoblastoma, Pelizaeus-Merzbacher disease, 
Duchenne muscular dystrophy, and Currarino syndrome. 

Another promising technique that has been developed for 
genotyping Small quantities of genetic material with very 
high fidelity is MOLECULAR INVERSION PROBES 
(MIPs), such as AFFMETRIX's GENFLEX Arrays. This 
technique has the capability to measure multiple SNPs in 
parallel: more than 10,000 SNPS measured in parallel have 
been verified. For Small quantities of genetic material, call 
rates for this technique have been established at roughly 95%, 
and accuracy of the calls made has been established to be 
above 99%. So far, the technique has been implemented for 
quantities of genomic data as Small as 150 molecules for a 
given SNP. However, the technique has not been verified for 
genomic data from a single cell, or a single strand of DNA, as 
would be required for pre-implantation genetic diagnosis. 

The MIP technique makes use of padlock probes which are 
linear oligonucleotides whose two ends can be joined by 
ligation when they hybridize to immediately adjacent target 
sequences of DNA. After the probes have hybridized to the 
genomic DNA, a gap-fill enzyme is added to the assay which 
can add one of the four nucleotides to the gap. If the added 
nucleotide (A.C.T.G) is complementary to the SNP under 
measurement, then it will hybridize to the DNA, and join the 
ends of the padlock probe by ligation. The circular products, 
or closed padlock probes, are then differentiated from linear 
probes by exonucleolysis. The exonuclease, by breaking 
down the linear probes and leaving the circular probes, will 
change the relative concentrations of the closed vs. the 
unclosed probes by a factor of 1000 or more. The probes that 
remain are then opened at a cleavage site by another enzyme, 
removed from the DNA, and amplified by PCR. Each probe is 
tagged with a different tag sequence consisting of 20 base tags 
(16,000 have been generated), and can be detected, for 
example, by the AFFMETRIX GENFLEX Tag Array. The 
presence of the tagged probe from a reaction in which a 
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particular gap-fill enzyme was added indicates the presence 
of the complimentary amino acid on the relevant SNP. 
The molecular biological advantages of MIPS include: (1) 

multiplexed genotyping in a single reaction, (2) the genotype 
"call occurs by gap fill and ligation, not hybridization, and 
(3) hybridization to an array of universal tags decreases false 
positives inherent to most array hybridizations. In traditional 
500K, TAOMAN and other genotyping arrays, the entire 
genomic sample is hybridized to the array, which contains a 
variety of perfect match and mismatch probes, and an algo 
rithm calls likely genotypes based on the intensities of the 
mismatch and perfect match probes. Hybridization, however, 
is inherently noisy, because of the complexities of the DNA 
sample and the huge number of probes on the arrays. MIPs, on 
the other hand, uses multiplex probes (i.e., not on an array) 
that are longer and therefore more specific, and then uses a 
robust ligation step to circularize the probe. Background is 
exceedingly low in this assay (due to specificity), though 
allele dropout may be high (due to poor performing probes). 
When this technique is used on genomic data from a single 

cell (or small numbers of cells) it will—like PCR based 
approaches Suffer from integrity issues. For example, the 
inability of the padlock probe to hybridize to the genomic 
DNA will cause allele dropouts. This will be exacerbated in 
the context of in-vitro fertilization since the efficiency of the 
hybridization reaction is low, and it needs to proceed rela 
tively quickly in order to genotype the embryo in a limited 
time period. Note that the hybridization reaction can be 
reduced well below vendor-recommended levels, and micro 
fluidic techniques may also be used to accelerate the hybrid 
ization reaction. These approaches to reducing the time for 
the hybridization reaction will result in reduced data quality. 
Once the genetic data has been measured, the next step is to 

use the data for predictive purposes. Much research has been 
done in predictive genomics, which tries to understand the 
precise functions of proteins, RNA and DNA so that pheno 
typic predictions can be made based on genotype. Canonical 
techniques focus on the function of Single-Nucleotide Poly 
morphisms (SNP); but more advanced methods are being 
brought to bear on multi-factorial phenotypic features. These 
methods include techniques, such as linear regression and 
nonlinear neural networks, which attempt to determine a 
mathematical relationship between a set of genetic and phe 
notypic predictors and a set of measured outcomes. There is 
also a set of regression analysis techniques, such as Ridge 
regression, log regression and stepwise selection, that are 
designed to accommodate sparse data sets where there are 
many potential predictors relative to the number of outcomes, 
as is typical of genetic data, and which apply additional 
constraints on the regression parameters so that a meaningful 
set of parameters can be resolved even when the data is 
underdetermined. Other techniques apply principal compo 
nent analysis to extract information from undetermined data 
sets. Other techniques, such as decision trees and contingency 
tables, use strategies for Subdividing Subjects based on their 
independent variables in order to place Subjects in categories 
or bins for which the phenotypic outcomes are similar. A 
recent technique, termed logical regression, describes a 
method to search for different logical interrelationships 
between categorical independent variables in order to model 
a variable that depends on interactions between multiple inde 
pendent variables related to genetic data. Regardless of the 
method used, the quality of the prediction is naturally highly 
dependant on the quality of the genetic data used to make the 
prediction. 
Normal humans have two sets of 23 chromosomes in every 

diploid cell, with one copy coming from each parent. Aneu 
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ploidy, a cell with an extra or missing chromosomes, and 
uniparental disomy, a cell with two of a given chromosome 
that originate from one parent, are believed to be responsible 
for a large percentage of failed implantations, miscarriages, 
and genetic diseases. When only certain cells in an individual 5 
are aneuploid, the individual is said to exhibit mosaicism. 
Detection of chromosomal abnormalities can identify indi 
viduals or embryos with conditions such as Down syndrome, 
Klinefelters syndrome, and Turner syndrome, among others, 
in addition to increasing the chances of a Successful preg- 10 
nancy. Testing for chromosomal abnormalities is especially 
important as mothers age: between the ages of 35 and 40 it is 
estimated that between 40% and 50% of the embryos are 
abnormal, and above the age of 40, more than half of the 
embryos are abnormal. 15 

Karyotyping, the traditional method used for the prediction 
of aneuploides and mosaicism is giving way to other more 
high throughput, more cost effective methods. One method 
that has attracted much attention recently is Flow cytometry 
(FC) and fluorescence in situ hybridization (FISH) which can 20 
be used to detect aneuploidy in any phase of the cell cycle. 
One advantage of this method is that it is less expensive than 
karyotyping, but the cost is significant enough that generally 
a Small selection of chromosomes are tested (usually chro 
mosomes 13, 18, 21, X, Y, also sometimes 8, 9, 15, 16, 17, 25 
22); in addition, FISH has a low level of specificity. Using 
FISH to analyze 15 cells, one can detect mosaicism of 19% 
with 95% confidence. The reliability of the test becomes 
much lower as the level of mosaicism gets lower, and as the 
number of cells to analyze decreases. The test is estimated to 30 
have a false negative rate as high as 15% when a single cell is 
analysed. There is a great demand for a method that has a 
higher throughput, lower cost, and greater accuracy. 

Listed here is a set of prior art which is related to the field 
of the current invention. None of this prior art contains or in 35 
any way refers to the novel elements of the current invention. 
In U.S. Pat. No. 6,720,140, Hartley etal describe a recombi 
national cloning method for moving or exchanging segments 
of DNA molecules using engineered recombination sites and 
recombination proteins. In U.S. Pat. No. 6,489,135 Parrottet 40 
al. provide methods for determining various biological char 
acteristics of in vitro fertilized embryos, including overall 
embryo health, implantability, and increased likelihood of 
developing Successfully to term by analyzing media speci 
mens of in vitro fertilization cultures for levels of bioactive 45 
lipids in order to determine these characteristics. In US Patent 
Application 20040033596 Threadgilletal. describe a method 
for preparing homozygous cellular libraries useful for in vitro 
phenotyping and gene mapping involving site-specific 
mitotic recombinationina plurality of isolated parent cells. In 50 
U.S. Pat. No. 5,994,148 Stewart et al. describe a method of 
determining the probability of an in vitro fertilization (IVF) 
being Successful by measuring Relaxin directly in the serum 
or indirectly by culturing granulosa lutein cells extracted 
from the patient as part of an IVF/ET procedure. In U.S. Pat. 55 
No. 5,635,366 Cooke et al. provide a method for predicting 
the outcome of IVF by determining the level of 11 B-hydrox 
ysteroid dehydrogenase (11 (3-HSD) in a biological sample 
from a female patient. In U.S. Pat. No. 7,058,616 Larderetal. 
describe a method for using a neural network to predict the 60 
resistance of a disease to a therapeutic agent. In U.S. Pat. No. 
6,958,211 Vingerhoets et al. describe a method wherein the 
integrase genotype of a given HIV strain is simply compared 
to a known database of HIV integrase genotype with associ 
ated phenotypes to find a matching genotype. In U.S. Pat. No. 65 
7,058,517 Denton et al. describe a method wherein an indi 
viduals haplotypes are compared to a known database of 

8 
haplotypes in the general population to predict clinical 
response to a treatment. In U.S. Pat. No. 7,035,739 Schadt at 
al. describe a method is described wherein a genetic marker 
map is constructed and the individual genes and traits are 
analyzed to give a gene-trait locus data, which are then clus 
tered as a way to identify genetically interacting pathways, 
which are validated using multivariate analysis. In U.S. Pat. 
No. 6,025,128 Veltrietal. describe a method involving the use 
of a neural network utilizing a collection of biomarkers as 
parameters to evaluate risk of prostate cancer recurrence. 
The cost of DNA sequencing is dropping rapidly, and in the 

near future individual genomic sequencing for personal ben 
efit will become more common. Knowledge of personal 
genetic data will allow for extensive phenotypic predictions 
to be made for the individual. In order to make accurate 
phenotypic predictions high quality genetic data is critical, 
whatever the context. In the case of prenatal or pre-implan 
tation genetic diagnoses a complicating factor is the relative 
paucity of genetic material available. Given the inherently 
noisy nature of the measured genetic data in cases where 
limited genetic material is used for genotyping, there is a 
great need for a method which can increase the fidelity of, or 
clean, the primary data. 

SUMMARY OF THE INVENTION 

The system disclosed enables the cleaning of incomplete or 
noisy genetic data using secondary genetic data as a source of 
information. While the disclosure focuses on genetic data 
from human Subjects, and more specifically on as-yet not 
implanted embryos or implanted fetuses, it should be noted 
that the methods disclosed apply to the genetic data of a range 
of organisms, in a range of contexts. The techniques 
described for cleaning genetic data are most relevant in the 
context of pre-implantation diagnosis during in-vitro fertili 
Zation, prenatal diagnosis in conjunction with amniocentesis, 
chorion villus biopsy, and fetal blood sampling, and non 
invasive prenatal diagnosis, where a small quantity of fetal 
genetic material is isolated from maternal blood. The diag 
noses may focus on inheritable diseases, increased likeli 
hoods of defects or abnormalities, as well as making pheno 
type predictions for individuals to enhance clinical and 
lifestyle decisions. The invention addresses the shortcomings 
of prior art that are discussed above. 

In one aspect of the invention, methods make use of imper 
fect knowledge of the genetic data of the mother and the 
father, together with the knowledge of the mechanism of 
meiosis and the imperfect measurement of the embryonic 
DNA, in order to reconstruct, in silico, the embryonic DNA at 
the location of key SNPs with a high degree of confidence. It 
is important to note that the parental data allows the recon 
struction not only of SNPs that were measured poorly, but 
also of insertions, deletions, and of SNPs or whole regions of 
DNA that were not measured at all. 
The disclosed method is applicable in the context of in 

vitro fertilization, where a very small number of blastomeres 
are available for genotyping from each embryo being consid 
ered for implantation. The disclosed method is equally appli 
cable to the context of Non-Invasive Prenatal Diagnosis 
(NIPD) where only a small number offetal cells, or fragments 
of fetal DNA, have been isolated from the mother's blood. 
The disclosed method is more generally applicable in any 
case where a limited amount of genetic data is available from 
the target genome, and additional genetic data is available 
from individuals who are genetically related to the target. 

In one aspect of the invention, the fetal or embryonic 
genomic data which has been reconstructed can be used to 
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detect if the cell is aneuploid, that is, if fewer or more than two 
of a particular chromosome is present in a cell. A common 
example of this condition is trisomy-21, which gives rise to 
Down syndrome. The reconstructed data can also be used to 
detect for uniparental disomy, a condition in which two of a 
given chromosome are present, both of which originate from 
one parent. This is done by creating a set of hypotheses about 
the potential states of the DNA, and testing to see which one 
has the highest probability of being true given the measured 
data. Note that the use of high throughput genotyping data for 
screening for aneuploidy enables a single blastomere from 
each embryo to be used both to measure multiple disease 
linked loci as well as Screen for aneuploidy. 

In another aspect of the invention, the direct measurements 
of the amount of genetic material, amplified or unamplified, 
present at a plurality of loci, can be used to detect for aneup 
loides, or uniparental disomy. The idea behind this method is 
simply that the amount of genetic material present during 
amplification is proportional to the amount of genetic infor 
mation in the initial sample, and measuring these levels at 
multiple loci will give a statistically significant result. 

In another aspect of the invention, the disclosed method 
can clean genetic material of the individual which has been 
contaminated by foreign DNA or RNA by identifying the data 
generated by extraneous genetic materials. The spurious sig 
nals generated by the contaminating DNA can be recognized 
in a manner similar to that way that chromosome-wide 
anomalous signals generated by aneuploides can be detected. 

In another aspect of the invention, target cells are isolated, 
the genetic data contained in those cells are amplified, and 
measurements of multiple SNPs are made using a combina 
tion of one or more of the following techniques: PCR-based 
amplification techniques, PCR-based measurement tech 
niques, or detection techniques based on MOLECULAR 
INVERSION PROBES, or microarrays such as the GENE 
CHIP or TAOMAN systems. This genetic data is then used in 
the system described herein. 

In another aspect of the invention, the genetic data of an 
individual can be cleaned using diploid and haploid data from 
both parents. Alternately, haploid data from a parent can be 
simulated if diploid and haploid data of the parents parent 
can be measured. In another aspect, genetic data from any 
person of a known genetic relation to the individual can be 
used to clean the data of the individual, including parents, 
siblings, grandparents, offspring, cousins, uncles, aunts etc. 

In another aspect of the invention, the target and/or related 
individual’s genetic data may be partly or wholly known in 
silico, obviating the need for some direct measurements. Por 
tions of the genetic data can be generated in silico by means 
of an informatics approach utilizing a hidden Markov model. 

In another aspect of the invention, it is possible to estimate 
the confidence one has in the determination of those SNPs. 

Note that the techniques described herein are relevant both 
to measurements of genetic material in one, or a small number 
of cells, as well as to measurements on Smaller amounts of 
DNA such as that which can be isolated from the mother's 
blood in the context of Non-invasive Prenatal Diagnosis 
(NIPD). Also note that this method can be equally applied to 
genomic data in silico, i.e. not directly measured from genetic 
material. 

It will be recognized by a person of ordinary skill in the art, 
given the benefit of this disclosure, aspects and embodiments 
that may implement one or more of the systems, methods, and 
features, disclosed herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1: an illustration of the concept of recombination in 
meiosis for gamete formation. 
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10 
FIG. 2: an illustration of the variable rates of recombina 

tion along one region of Human Chromosome 1. 
FIG.3: determining probability of false negatives and false 

positives for different hypotheses. 
FIG. 4: the results from a mixed female sample, all loci 

hetero. 
FIG. 5: the results from a mixed male sample, all loci 

hetero. 
FIG. 6: Ct measurements for male sample differenced from 

Ct measurements for female sample. 
FIG. 7: the results from a mixed female sample: Taqman 

single dye. 
FIG. 8: the results from a mixed male; Taqman single dye. 
FIG. 9: the distribution of repeated measurements for 

mixed male sample. 
FIG. 10: the results from a mixed female sample: qPCR 
CaSUS. 

FIG. 11: the results from a mixed male sample: qPCR 
CaSUS. 

FIG. 12: Ct measurements for male sample differenced 
from Ct measurements for female sample. 

FIG.13: detecting aneuploidy with a third dissimilar chro 
OSOC. 

FIGS. 14A and 14B: an illustration of two amplification 
distributions with constant allele dropout rate. 

FIG. 15: a graph of the Gaussian probability density func 
tion of alpha. 

FIG.16: the general relationship diagram of the input data, 
the database data, the algorithm and the output. 

FIG. 17: a visual overview of how to derive P(HIM). 
FIG. 18: a visual representation of the flow chart describing 

the algorithm used to demonstrate the effectiveness of the 
cleaning algorithm on simulated data. 

FIG. 19: an illustration of a system that is configured to 
accomplish the method disclosed herein, in the context of 
phenotype prediction of embryos during IVF. 

FIG. 20: a summary of different aneuploidy detection tech 
niques 

FIG.21: an example of input data for the method described 
using SNPs with a low degree of cosegregation. 

FIG.22: an example of input data for the method described 
using SNPs with a high degree of cosegregation. 

FIG. 23: an example of the output data for the input data 
shown in FIG. 21. 

FIG. 24: an example of the output data for the input data 
shown in FIG. 23. 

FIG. 25: the results of the preliminary simulation. 
FIG. 26: the results of the full simulation of the method. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

Conceptual Overview of the System 
The goal of the disclosed system is to provide highly accu 

rate genomic data for the purpose of genetic diagnoses. In 
cases where the genetic data of an individual contains a sig 
nificant amount of noise, or errors, the disclosed system 
makes use of the similarities between genetic data of related 
individuals, and the information contained in that secondary 
genetic data, to clean the noise in the target genome. This is 
done by determining which segments of chromosomes were 
involved in gamete formation and where crossovers occurred 
during meiosis, and therefore which segments of the second 
ary genomes are expected to be nearly identical to sections of 
the target genome. In certain situations this method can be 
used to clean noisy base pair measurements, but it also can be 
used to infer the identity of individual base pairs or whole 
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regions of DNA that were not measured. In addition, a con 
fidence can be computed for each reconstruction call made. A 
highly simplified explanation is presented first, making unre 
alistic assumptions in order to illustrate the concept of the 
invention. A detailed Statistical approach that can be applied 
to the technology of today is presented afterward. 

Another goal of the system is to detect abnormal numbers 
of chromosomes, sections of chromosomes, and origins of 
chromosomes. In genetic samples that are aneuploid, have 
unbalanced translocations, uniparental disomy, or other gross 
chromosomal abnormalities, the amount of genetic material 
present at a plurality of loci can be used to determine the 
chromosomal state of the sample. There are multiple 
approaches to this method, and several of them are described 
here. In some approaches, the amount of genetic material 
presentina sample is sufficient to directly detectaneuploides. 
In other approaches, the method for cleaning the genetic 
material can be used to enhance the efficiency of detection of 
chromosomal imbalances. A confidence can be computed for 
each chromosomal call made. 
Technical Description of the System 

A Simplified Example 

FIG. 1 illustrates the process of recombination that occurs 
during meiosis for the formation of gametes in a parent. The 
chromosome 101 from the individual’s mother is shown in 
grey. The chromosome 102 from the individual’s father is 
shown in white. During this interval, known as Diplotene, 
during Prophase I of Meiosis, a tetrad of four chromatids 103 
is visible. Crossing over between non-sister chromatids of a 
homologous pair occurs at the points known as recombination 
nodules 104. For the purpose of illustration, the example will 
focus on a single chromosome, and three Single Nucleotide 
Polymorphisms (SNPs), which are assumed to characterize 
the alleles of three genes. For this discussion it is assumed that 
the SNPs may be measured separately on the maternal and 
paternal chromosomes. This concept can be applied to many 
SNPs, many alleles characterized by multiple SNPs, many 
chromosomes, and to the current genotyping technology 
where the maternal and paternal chromosomes cannot be 
individually isolated before genotyping. 

Attention must be paid to the points of potential crossing 
over in between the SNPs of interest. The set of alleles of the 
three maternal genes may be described as (a1, a2, as) 
corresponding to SNPs (SNP, SNP, SNPs). The set of alle 
les of the three paternal genes may be described as (a.a. 
as). Consider the recombination nodules formed in FIG. 1, 
and assume that there is just one recombination for each pair 
of recombining chromatids. The set of gametes that are 
formed in this process will have gene alleles: (a1, a2, als), 
(a,n-1, a2s als), (a1, a2, als), (a1, a2, ana). In the case With 
no crossing over of chromatids, the gametes will have alleles 
(a1, a2, als), (a1, a2, als). In the case with two points of 
crossing over in the relevant regions, the gametes will have 
alleles (a, a2, als), (a1, a2, als). These eight different 
combinations of alleles will be referred to as the hypothesis 
set of alleles, for that particular parent. 
The measurement of the alleles from the embryonic DNA 

will be noisy. For the purpose of this discussion take a single 
chromosome from the embryonic DNA, and assume that it 
came from the parent whose meiosis is illustrated in FIG. 1. 
The measurements of the alleles on this chromosome can be 
described in terms of a vector of indicator variables: A-LA 
A. As where A =1 if the measured allele in the embryonic 
chromosome is a , A-1 if the measured allele in the 
embryonic chromosome is a , and A=0 if the measured 
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allele is neither a, or a Based on the hypothesis set of 
alleles for the assumed parent, a set of eight vectors may be 
created which correspond to all the possible gametes describe 
above. For the alleles described above, these vectors would be 
a=1 11, a 1 1-1, a 1-11, a 1-1-1, as I-1 
11", a -1 1-1, all--1-1 1", as I-1-1-1. In this 
highly simplified application of the system, the likely alleles 
of the embryo can be determined by performing a simple 
correlation analysis between the hypothesis set and the mea 
sured vectors: 

i=arg maxA'a i=1 ... 8 (1) 

Once i* is found, the hypothesis a, is selected as the most 
likely set of alleles in the embryonic DNA. This process is 
then repeated twice, with two different assumptions, namely 
that the embryonic chromosome came from the mother or the 
father. That assumption which yields the largest correlation 
A'a, would be assumed to be correct. In each case a hypoth 
esis set of alleles is used, based on the measurements of the 
respective DNA of the mother or the father. Note that in a 
typical embodiment of the disclosed method, one measures a 
large number of SNPs between those SNPs that are important 
due to their association with particular disease phenotypes 
these will be referred to these as Phenotype-associated SNPs 
or PSNPs. The Non-phenotype-associated SNPs (NSNPs) 
between the PSNPs may be chosen a-priori (for example, for 
developing a specialized genotyping array) by selecting from 
the NCBI dbSNP database those RefSNPs that tend to differ 
substantially between individuals. Alternatively, the NSNPs 
between the PSNPs may be chosen for a particular pair of 
parents because they differ between the parents. The use of 
the additional SNPs between the PSNPs enables one to deter 
mine with a higher level of confidence whether crossover 
occurs between the PSNPs. It is important to note that while 
different “alleles' are referred to in this notation, this is 
merely a convenience; the SNPs may not be associated with 
genes that encode proteins. 
The System in the Context of Current Technology 

In another more complex embodiment, the a-posteriori 
probability of a set of alleles is computed given a particular 
measurement, taking into account the probability of particu 
lar crossovers. In addition, the scenario typical of microarrays 
and other genotyping technologies is addressed where SNPs 
are measured for pairs of chromosomes, rather than for a 
single chromosome at a time. The measurements of the geno 
type at the locus i for the embryonic, paternal and maternal 
chromosomes may be characterized respectively by random 
variables representing the pairs of SNP measurements (e. 
e2), (pl. p2) and (m, m2). Since one cannot determine 
the presence of crossovers in the maternal and paternal chro 
mosomes if all measurements are made as pairs, the method is 
modified: in addition to genotyping the fertilized embryos 
and paternal and maternal diploid tissue, one haploid cell 
from each parent, namely, a sperm cell and an egg cell, is also 
genotyped. The measured alleles of the sperm cell are repre 
sented by p, i=1 . . . N and the complementary alleles 
measured from the paternal diploid tissue by p. Similarly, 
the measured alleles of the egg cell are represented by mand 
their complement in the mother's diploid cell by m. These 
measurements provide no information on where the parental 
chromosomes crossed over in generating the measured sperm 
and egg cells. However, one can assume that the sequence of 
Nalleles on the egg or sperm was created from the parental 
chromosomes by a small number of, or no, crossovers. This is 
Sufficient information to apply the disclosed algorithm. A 
certain error probability is associated with calling the paternal 
and maternal SNPs. The estimation of this error probability 
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will vary based on the measurements made (pp.) and 
(m, m) and the signal-to-noise ratio for the technology 
used. Although these error probabilities can be uniquely com 
puted for each locus without affecting the disclosed method, 
the algebra is simplified here by assuming that the probabili 
ties of correctly calling the paternal and maternal SNPs are 
constant at p, and p, respectively. 
Assume that a measurement is performed on the embry 

onic DNA which is termed measurement M. In addition, the 
notation is slightly modified so that A is now a set and not a 
vector: A refers to a particular hypothesis about the combi 
nation (or set) of alleles derived from each parent. The set of 
all possible combinations of alleles A from both parents is 
denoted as S. The goal is to determine the combination of 
alleles (or that hypothesis) AeS with the highest a-posteriori 
probability, given the measurement M: 

A*=argmax P(AIM),VAeS. (2) 

Using the law of conditional probabilities, P(AIM)=P(MIA) 
P(A)/P(M). Since P(M) is common for all different A's, the 
optimizing search can be recast as: 

A*=arg max P(MIA)P(A), VAeS. (3) 

Now consider the computation of P(M/A). Begin with a 
single locusi, and let the hypothesis be that this locus on the 
embryo is derived from the parental SNPs p, and m, 
where the underscore, is used to denote the true value of these 
Parental SNPs, as opposed to the measurements performed, 
p., and m, which may or may not be correct. The true value 
of the embryonic SNPs is denoted as (e, e.g.). If hypoth 
esis A is true, then (e,g. e, 2.) (p...is mal) O (m,i. pal.). 
Since one cannot differentiate which of the measurements 

(e, e...) comes from which parent, both orders must be 
considered so the hypothesis set Ap, (m,n), (m, 
p.). The probability of a particular measurement M 
depends on the true values or the underlying states of the 
parental SNPs, namely (p, p.2) and (m, m2). Since 
there are four SNPs, p, p, m, m, and each of these 
can assume the value of four nucleotide bases, A, C, T. G. 
there are 4 or 256 possible states. The algorithm is illustrated 
for one state s, for which it is assumed that p, zip, z 
muzma. From this explanation, it will be clear how to 
apply the method to all 256 possible states, s, k=1 ... 256. 
Assume a measurement M of embryonic SNPs (e., ea) is 
performed, and the resulte, p. e. m. is obtained. The 
a priori probability for this measurement given that hypoth 
esis A and states are true is computed: 

P(e1, pipez-m 1|A,S)-P(e, ple, 2-m, 1 IA, 
SI)P(e1, pile, p,1)P(e2-mile, 2 m, 1)+ 
Pe, 1-mile, 2, p.1.A.S)P(e1, pile, 1 
m, 1pp. 17 m, 1)P(ezi-mile, 2, p.2, pp. 27. 
m, 1) (4) 

Consider the first expressions in the first term and second 
term: P(e1, p1...e. mi., A.S)-P(e1, mea, pi, IA, 
Si)=0.5 since the hypothesis A-I(p, m,), (m, p.) 
makes two orderings for the embryonic SNPs equally likely. 
Now consider the second expression of the first term, 
P(e., ple, p.), the probability of measuring e. p. 
given the assumption that embryonic SNP e, actually is 
derived from paternal SNP p, The probabilities for cor 
rectly measuring the paternal SNPs, maternal SNPs, and 
embryonic SNPs are p, p, and p. Given the assumption 
(e, p.), the measurement (e1, p1) requires either that 
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14 
both embryonic and paternal SNPs are correctly measured, or 
that both are incorrectly measured and they happen to be 
incorrectly measured as the same nucleotide (A.C.T. or G). 
So, P(e, ple, pl.) pp.--(1-p)(1-p)/3 where it is 
assumed for simplicity that the probability of incorrectly 
calling all of the four nucleotides is equally likely—the algo 
rithm can be easily modified to accommodate different prob 
abilities of calling a particular nucleotide (A.C.T.G) given a 
measurement on another particular nucleotide. The same 
approach may be applied to the third expression in the first 
term to obtain P(e., mile, m.) pp.--(1-p)(1-p,)/ 
3. Now consider the second expression of the second term. 
P(e1, ple, m, m, 17p1) requires either that e, or 
p, be an incorrect measurement, or that both be incorrect 
measurements, so that the measured values happen to be 
equal: P(e1, ple, m, m, p,1)-p-(1-p)/3+(1- 
p.)p/3+(1-p)(1-p)2/9. The same argument can be applied 
to the last expression of the second term to yield P(e= 
mile, 2, p.2 m, 1,7p,2)-p-(1-p)/3+(1-p)pr/3+(1-p) 
(1-p)2/9. Now, combining all of these terms, and making 
the assumption—merely to simplify the algebra—that 
pp. p. p. one can compute: 

1 4. 3 2 (160p' - 160p +96p-28p +13) 

Although the computation will vary, a similar conceptual 
approach to that described here would be used for all 256 
possible states, se k=1 . . .256. Computing P(e, p. e. 
m.A.S.) for all 256 states s, and Summing over the probabil 
ity of each s, one obtains P(e., p. e. m.A). In other 
words: 

P(MIA) = X PM IA, s) P(s) (6) 
i=1... 256 

In order to compute the probabilities of each states, P(s), 
one must treat all the separate alleles making up a state as 
separate events since they are on separate chromosomes, in 
other words: P(s)=P(p, Pt.2 is Illi, lis m,2)-P(p,u)P(p,2,...) 
P(m)P(m). Bayesian techniques may be applied to esti 
mate the probability distribution for the individual measure 
ments. Every measurement of an allele on the maternal or 
paternal chromosomes at locus i may be treated as a coin toss 
experiment to measure the probability of this allele being a 
particular value (A.C.T or G). These measurements are made 
on the adult tissue samples and may be treated as being totally 
reliable, even though pairs of alleles are measured for each 
SNP and it is not possible to determine which allele comes 
from which chromosome. Let w P(p,u), corresponding 
to the probability of the SNP i on the father's chromosome 
being value p, . In the following explanation, w is used 
insteadofw. Let the measurements performed on SNPiof 
the father's chromosome be characterized as collecting data 
D. One can create a probability distribution for w, p(w) and 
update this after the data is measurement according to Bayes 
Theorem: p(w|D)=p(w)p(D|w)/p(D). Assume n alleles of 
SNP i are observed and that the particular allele correspond 
ing tow comes up h times—in other words, heads is observed 
h times. The probability of this observation can be character 
ized by the binomial distribution 
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Before data is collected, assume there is a prior distribution 
p(w) which is uniform between 0 and 1. By applying the 
Bayes theorem, it is straightforward to show that the resulting 
distribution for p(w|D) will be a beta distribution of the form: 

and c is a normalizing constant. However many times p(w|D) 
is then updated by applying Bayes theorem and new measure 
ments, it will continue to have a beta distribution as above. 
The estimates of p(w) are updated every time a new measure 
ment is collected. Note that there will be a different function 
p(w) for different races and different genders, using the same 
groupings used in the Hapmap project, since the probability 
of different alleles at particular SNPs is dependent on these 
groupings of race and gender. For the computation of P(S), 
each allele on each chromosome will be associated with an 
estimated probability distribution, namely pl(w), p.2, 
(w) and p2(W). One may then compute the maxi 
mum a-posteriori (MAP) estimate for P(s) according to the 
MAP estimate for each of the individual distributions. For 
example, let will be the argument that maximizes 
p. (W). The MAPestimate of P(s) may be found accord 
ing to 

P(S) MAP-Wiwa, “w, I'wnz." (9) 
Since there is the a probability distribution for each w, one 

can also compute conservative estimates of the values P(S) to 
any specified confidence level, by integrating over the prob 
ability distribution, rather than simply using the MAP esti 
mates. It is possible to do this, for example, to conservatively 
estimate P(MIA) to within some confidence level. Whether a 
conservative estimate or a MAP estimate is used, the estimate 
of P(s) is continually refined for the computation of P(MIA). 
In what follows, reference to the assumed state will be elimi 
nated to simplify the notation, and State S is assumed for all 
explanations of detailed computation. Bear in mind that in 
actuality these calculations would be performed for each of 
256 states and be summed over the probability of each. 
The method of computing P(MIA) is now extended to 

multiple SNP loci, assuming that M represents the set of 
measurements of N pairs of SNPs on the embryo, 
MM, ..., M. Assume also that A represents the set of 
hypotheses for each SNP about which parental chromosomes 
contributed to that SNP A-LA,..., A. Let S, represent the 
set of all other possible hypotheses that are different from A or 
are in the set A. P(MIA) and P(MIA) may be computed: 

PMA) = || PM. A.), (10) 
i=1 ... W 

P(MA) = X. P(A) P(MA) 
i=1 ... W 

A. 

Consider the computation of P(A). In essence, this is based on 
the likelihood of particular crossovers occurring in the for 
mation of the gametes that form the embryo. The probability 
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16 
of a particular allele set depends on two factors, namely the 
probability that the embryonic chromosome comes from the 
mother or the father, and the probability of a particular com 
bination of crossovers. For a normal set of embryonic chro 
mosomes that do not suffer from aneuploidy, the a-priori 
probability that the embryonic chromosome comes from the 
mother or father is ~50% and is consequently common for all 
A. Now, consider the probability of a particular set of recom 
bination nodes. The number of relevant recombination sites R 
depends on the number of measured SNPS: R=N-1. Since the 
DNA segment constituting N NSNPs around the PSNP of 
interest will be relatively short, crossover interference makes 
it highly improbable that two crossovers on the same chro 
mosome can occur in one region. For reasons of computa 
tional efficiency this method assumes that only one crossover 
will occur in each region for each relevant chromosome, and 
this can occur at R possible sites. It will be obvious to some 
one skilled in the art how this method may be extended to 
include the possibility where there are multiple crossovers in 
a given region. 

Let the probability of a crossover in each region between 
SNPs be denoted Pr-1 ... N-1. To first order, the probabil 
ity of a recombination node in a region r between two SNPs is 
proportional to the genetic distance between those SNPs 
(measured in cMorgans). However, much recent research has 
enabled a precise modeling of the probability of recombina 
tion between two SNP loci. Observations from sperm studies 
and patterns of genetic variation show that recombination 
rates vary extensively over kilobase scales and that much 
recombination occurs in recombination hotspots, and causes 
linkage disequilibrium to display a block-like structure. The 
NCBI data about recombination rates on the Human Genome 
is publicly available through the UCSC Genome Annotation 
Database. 

Various data sets can be used singly or in combination. Two 
of the most common data sets are from the Hapmap Project 
and from the Perlegen Human Haplotype Project. The latter is 
higher density; the former is higher quality. See FIG. 2 for the 
regional recombination rates from positions 1,038,423 to 
4,467.775 of chromosome 1, based on the HapMap Phase I 
data, release 16a. These rates were estimated using the revers 
ible jump Markov Chain Monte Carlo (MCMC) method 
which is available in the package LDHat. The state-space 
considered is the distribution of piece-wise constant recom 
bination rate maps. The Markov chain explores the distribu 
tion of the number and location of rate change-points, in 
addition to the rates for each segment, 201. These results may 
be used to generate an estimate of P. by integrating over the 
recombination rates times by the length of each constant 
segment between the SNPS. The cumulative recombination 
rate over the nucleotides 202 is shown in FIG. 2 in red. 

Let C be a set of indicator variables c, such that c. 1 if a 
crossover occurred in region r and 0 otherwise. co -1 if no 
crossovers occurred and 0 otherwise. Since it is assumed that 
only one crossover can occur in a region of NSNPs, only one 
element of the set C is non-zero. Hence, the probability of 
crossover represented by set C is found to be: 

(11) 

In the hypothesis A about SNPs 1 . . . N, there are four 
potential crossovers of relevance. Namely, the potential 
crossovers in i) the paternal chromosomes that formed the 
embryo (denoted by set C of indicator variables), ii) the 



US 8,682,592 B2 
17 

paternal chromosomes that formed the sequenced sperm (set 
C.), iii) the maternal chromosomes that formed the embryo 
(set C) and iv) the maternal chromosomes that formed the 
sequenced egg (set C). Two additional assumptions are V) 
whether the first paternal embryonic SNP comes from p, or 
p, and vi) whether the first maternal embryonic SNP comes 
from m, or me. Since the probabilities of crossovers 
between SNPs is found to differ between races and sexes, 
different crossover probabilities will be denoted as P. for the 
paternal chromosomes, and P. for the maternal chromo 
somes. Therefore, the probability of a particular hypothesis 
A, which subsumes the sets C.C.C.C. is expressed as: 

P(A) = (12) 

1 

i( X P r Pr? X Pyr =1... W-1 r=1 ... W- r=1 ... W-1 

p: ( 1 - X p." 
r=1 ... W- r=1 ... W-1 

per? - X p.). || P: 
r=1... W- r=1 ... W-1 r=1 ... W 

Now with the equations for determining P(A) and P(M/A), 
all the elements necessary to compute A* per Equation 3 
above have been defined. Hence, it is possible to determine 
from the highly error-prone measurements of the embryonic 
SNPs where crossovers occurred, and to consequently clean 
the embryonic measurements with a high degree of confi 
dence. It remains to determine the degree of confidence in the 
best hypothesis A*. To determine this, it is necessary to find 
the odds ratio P(A*IM)/P(A*IM). The tools have all been 
described above for this computation: 

P(AM) P(AM) (13) 
P(A' | M) 1 - P(A*M) 

P(A) P(MIA) 

P(A)P(MA) 
(1 - P(A)p(MA) 

= ORA. 

The confidence in A* is then given as P(A*IM)=OR*/(1+ 
OR*). This computation indicates the confidence in a par 
ticular hypothesis A*, but it does not indicate a confidence in 
a particular determination of a SNP. In order to compute the 
confidence in a determination of embryonic PSNP n, it is 
necessary to create the set of all hypotheses A that don’t 
change the value of this SNP. This set will be denoted as S. 
which corresponds to all hypothesis that result in PSNP in on 
the embryo having the same value as is predicted by hypoth 
esis A*. Similarly, create a set S, which corresponds to all 
hypothesis that result in PSNP in having a different value to 
that predicted by hypothesis A*. Now, it is possible to com 
pute the odds ratio of the probability that the SNP is correctly 
called versus the probability that the SNP is incorrectly 
called: 
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X P(AIM) 
AeS.A., 

X P(AM) 
AeSA-7 

X P(AIM) 
AeSA 

1 - X 
AeSAk. 

(14) 

ORA = 

P(AM) 

AeSA. 

AeSA-7 

The confidence in the particular call of embryonic SNP in 
based on the odds ratio OR1, can be computed as: 

OR: 15 
P(correctly called SNP n) = X P(AIM) = 1 An (15) 

+ORA 
AeS.A., 

Note that this technique could also be used to detect such 
defects as uniparental disomy (UPD) wherein two of the same 
chromosomes are from the same parent, while none of that 
chromosomes from the other parent is present. Upon attempt 
ing to deduce the crossovers in the parent chromosomes, there 
will be no hypothesis which adequately explains the data with 
a high confidence, and ifalternate hypotheses are allowed that 
include the possibility of UPD, they will found to be more 
likely. 
Bounding the Effect of Uncertainty in Recombination Rates 
and SNP Measurement Reliability 
The disclosed method depends on: assumptions about the 

probability of recombination between particular SNPs: 
assumptions about the probability of the correct measurement 
of each SNP on the embryonic, sperm, egg, paternal and 
maternal chromosomes; and assumptions about the likeli 
hood of certain alleles within different population groups. 
Consider each of these assumptions: the mechanism of 
recombination is not perfectly understood and modeled, and 
the crossover probability has been established to vary based 
on an individual’s genotype. Furthermore, the techniques by 
which the recombination rates are measured show Substantial 
variability. For example, the package LDHat, which imple 
ments the reversible jump Markov Chain Monte Carlo 
(MCMC) method, makes a set of assumptions and requires a 
set of user inputs about the mechanism and characterization 
of recombination. These assumptions can affect predicted 
recombination rates between SNPs as is evinced by the dif 
ferent results obtained by various studies. 

It is anticipated that the assumptions about recombination 
rates, out of all assumptions listed above, will have the most 
impact on Equation 15. The computations described above 
should be based on the best estimates of the probability for 
crossover between SNPS, P. Thereafter, conservative esti 
mates may be used for P, using values at, for example, the 
95% confidence bounds for the recombination rates, in the 
direction that reduces the confidence measure P(correctly 
called SNP n). The 95% confidence bounds may be derived 
from confidence data produced by various studies of recom 
bination rates, and this may be corroborated by looking at the 
level of discordance between published data from different 
groups using different methods. 
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Similarly, the 95% confidence bounds may be used for the 
estimates of the probability that each SNP is correctly called: 
p. p. p. These numbers can be computed based on the 
actual measured array intensities included in the genotyping 
assay output files, combined with empirical data on the reli 
ability of the measurement technique. Note that those NSNPs 
for which these parameters p, p, and p, are not well estab 
lished may be ignored. For example, since the diploid paren 
tal data is reliably measured, one may ignore NSNP measure 
ments of the parents haploid cells and on the embryo that do 
not correspond to any of the alleles on the relevant SNPs of 
the parent’s diploid tissue. 

Lastly, consider the assumptions about the likelihood of 
certain alleles within different population groups, which give 
rise to the computation P(S). These assumptions also will not 
have a large impact on the disclosed method since the mea 
surement of the parental diploid data is reliable i.e. direct 
measurement of the states, from the parental samples typi 
cally result in data with high confidence. Nonetheless, it is 
possible to use the probability distribution for each was 
described in Equation 8 in order to compute a confidence 
bound for the probability of each state P(s). As above, one 
may compute the 95% confidence bound for each P(s) in the 
conservative direction that reduces confidence measure 
P(correctly called SNP n). 

The determination of P (correctly called SNP n) will 
inform the decision about how many NSNPs need to be 
measured around each PSNP in order to achieve the desired 
level of confidence. 

Note that there are different approaches to implementing 
the concept of the disclosed method, namely combining the 
measurement of the parent’s DNA, the measurement of the 
DNA of one or more embryos, and the a-priori knowledge of 
the process of meiosis, in order to obtain a better estimate of 
the embryonic SNPs. It will be clear to one skilled in the art, 
how similar methods can be applied when different subsets of 
the a-priori knowledge are known or not known, or known to 
a greater or lesser degree of certainty. For example, one can 
use the measurements of multiple embryos to improve the 
certainty with which one can call the SNPs of a particular 
embryo or to accommodate missing data from the parents. 
Note also that one does not need a PSNP of interest to be 
measured by the measurement technique. Even if that PSNPs 
is not determined by the measurement system, it can still be 
reconstructed with a high degree of confidence by the dis 
closed method. 

Also note that once the points of crossover that occurred 
during meiosis have been determined, and the regions of the 
target genome have been mapped to the pertinent regions of 
the parental DNA, it is possible to infer not only the identity 
of individual SNPs of interest, but also whole regions of DNA 
that may be missing in the measured target genome due to 
allele drop-out or other errors in measurement. It is also 
possible to measure insertions and deletions in the parental 
DNA, and use the disclosed method to infer that they exist in 
the target DNA. 

Various techniques may be used to improve the computa 
tional complexity of the disclosed algorithm described above. 
For example, one may only or predominantly select those 
NSNPs that differ between the mother and the father. Another 
consideration would be to only use NSNPs that are spaced 
nearby the PSNPs to minimize the chance of crossovers 
occurring between the NSNPs and PSNPs of interest. One 
could also use NSNPs that were spaced along the chromo 
some so as to maximize coverage of multiple PSNPs. Another 
consideration will be to initially use only a small number of 
NSNPs to determine roughly where crossovers occurred, and 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
with only a limited degree of certainty. Additional NSNPs can 
then be used to refine the crossover model and increase the 
probability of correctly calling the PSNPs. The number of 
crossover combinations to consider scales roughly as N 
where N is the number of SNPs and C is the maximum 
number of crossovers. Consequently, for C-4 it is possible to 
accommodate roughly N=100 for each PSNP while remain 
ing computationally tractable on a Pentium-IV processor. 
Using the approaches described above and other approaches 
for increased computational efficiency, N>100, CD4 can be 
easily accommodated. One such approach is described below. 

Note that there are many other approaches to make a call on 
a PSNP and generate an estimate of the probability that a 
PSNPs has been correctly determined, based on a particular 
set of embryonic data, parent data, and algorithm used, with 
out changing the underlying concept. This probability can be 
used for individual decision-making, and for implementing a 
reliable Service in the context of IVF or NIPGD. 
Recursive Solution to the Genetic Data Cleaning Algorithm 

Another embodiment of the invention involving an algo 
rithm that scales linearly is described here. Given the limited 
nature of computation power, the length of the computation 
may be a significant factor in the use of the disclosed method. 
When running computations, any algorithm that must com 
pute certain values where the number of computations needed 
rises exponentially with the number of SNPs can become 
unwieldy. A solution that involves a number of calculations 
that increase linearly with the number of SNPs will always be 
preferred from a time standpoint as the number of SNPs gets 
large. Below this approach is described. 
A simple approach, which is to consider all possible 

hypotheses must contend with the running time being an 
exponential function in number of SNPs. Suppose, as before, 
that measured data are a collection of measured embryo, 
father and mother chromosome measurements onk SNPs, i.e. 
M={M. . . . . M.) where M, (elepp.m.m.). As 
before, the hypotheses space is S={H',..., H}={set of all 
the hypotheses, where each hypothesis is of the format H= 
(H,...H.) where H, is the “mini” hypothesis for snipi, of 
the format H. (p.*.m.*) where p, *e{p,p} and me{m, 
m}. There are 4 different “mini” hypotheses H., in particu 
lar: 
H,1:(ei.e.,)={(p.m.) or (m.p.)}: H,2:(ei.e.)={(p. 
m2) or (m2.pl.)} 
H,3:(ei.e.,)={(p.m.) or (m.p.)}: H4:(ei.e.)={(p. 
m2) or (m2-p2)} 
The goal is to choose the most likely hypothesis H* as: 

H*=arg maxi-sip(HIM)–arg maxtis F(M,H) where 
function F(M,H)=P(HIM) 

There are 4 different hypotheses in the space S. By trying 
to find the best hypothesis by exhaustively exploring the 
entire space S', the necessary algorithm would be of expo 
nential order ink O(exp(k)), where k is the number of SNPs 
involved. For large k, even k>5, this is immensely slow and 
unpractical. Therefore, it is more practical to resort to a recur 
sive solution which solves the problem of size k as a function 
of the problem of size (k-1) in constant time. The solution 
shown here is of the linear order ink, O(k). 
Recursive Solution Linear in the Number of SNPs 

Begin with F(M,H)=P(HIM)=P(MIH)*P(H)/P(M). Then 
argmax F(M,H)–argmax P(MIH)*P(H) and the goal is to 
solve P(MIH)*P(H) in linear time. Suppose that Me mea 
surement on SNPs stok. He hypothesis on SNPss to k, 
and to simplify notation M. M. H. H. measurement 
and hypothesis on SNP k. As shown before: 
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Again a case of size k has been reduced to two pieces of 
smaller size, albeit a bit more complicated than before. Each 
of the pieces can be calculated as 

H-1 
W(M1), H,) = P(M,H,) (2. W(M11), H-1): PF (H 1, it.) 

W(Monk), H) = P(MH) "( X W(Mon le), H, I) PF(H, it.) 

So the algorithm will, for n=1,..., k, m=k, ... 1, for each of 
4 different H. H., calculate W(M,H), W(MH) and 
then combine them as needed to calculate W(MH,), for 
i=1,..., k. The number of operations is still linear ink. 
Application of the Disclosed Method to Embryonic Data 
when a Smaller or Different Set of Data is Available 

In one embodiment of the system it is only necessary to 
make use of diploid data from one parent (presumably the 
mother), with or without haploid data from either or both of 
the parents, and when that data is known to a greater or lesser 
degree of certainty. For example it is expected that, given the 
grueling nature of egg donation, there will be occasions when 
maternal haploid data is not readily available. It will be clear 
to one skilled in the art, after reading this description, how the 
statistical methods for computing the likelihood of a particu 
lar SNP can be modified given a limited data set. 
An alternative approach uses data from more distant rela 

tives to make up for missing diploid or haploid data of one or 
both parents. For example, since it is known that one set of an 
individual’s chromosomes come from each of his or her par 
ents, diploid data from the maternal grandparents could be 
used to partially reconstruct missing or poorly measured 
maternal haploid data. 

Note the recursive nature of this method: given the natu 
rally noisy measurement of single cell parental haploid data, 
along with the diploid and/or haploid data of the appropriate 
grandparents, the disclosed method could be used to clean the 
parental haploid data, which in turn will provide more accu 
rate genotyping of the embryo. It should be obvious to one 
skilled in the arts how to modify the method for use in these 
CaSCS. 

It is preferable to use more information rather than less, as 
this can increase the chances of making the right call at a 
given SNP, and can increase the confidence in those calls. 
This must be balanced with the increasing complexity of the 
system as additional techniques and Sources of data are used. 
There are many sources of additional information, as well as 
techniques available to use the information to augment the 
data. For example, there are informatics based approaches 
which take advantage of correlations which can be found in 
Hapmap data, or other repositories of genomic data. In addi 
tion there are biological approaches which can allow for the 
direct measurement of genetic data that otherwise would need 
to be recreated in silico. For example, haploid data otherwise 
unavailable may be measureable by extracting individual 
chromosomes from diploid cells using flow cytometry tech 
niques to isolate fluorescently tagged chromosomes. Alter 
nately, one may use cell fusion to create monoallelic hybrid 
cells to effect diploid to haploid conversion. 
Application of the Disclosed Method to Selecting which 
Embryo is Likely to Implant 

In one embodiment, the system can be used to determine 
the likelihood of an embryo to implant in the mother and 
develop into a baby. To the extent that the likelihood of the 
embryo implanting is determined by SNPs of the embryo, 
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and/or their relation to SNPs of the mother, the disclosed 
method will be important in helping the selection of embryos, 
based on making a reliable prediction of which will Success 
fully implant based on the clean SNP data. To best predict the 
likelihood it will be necessary to take into account the deter 
mined genotype of the embryo possibly combined with the 
levels of gene expression in the embryo, the levels of gene 
expression in the mother, and/or the determined genotype of 
the mother. 

In addition, it is well known that aneuploid embryos are 
less likely to implant, less likely to result in a Successful 
pregnancy, and less likely to result in a healthy child. Conse 
quently, screening for aneuploides is an important facet to 
selecting the embryo that is most likely to result in a Success 
ful outcome. More detail on this approach is given below. 
Deducing Parental Haploid Data 

In one embodiment of the method, it may be necessary to 
deduce parental haplotypes, given detailed knowledge of the 
diploid data of a parent. There are multiple ways this can be 
done. In the simplest case, haplotypes have already been 
inferred by molecular assay of single haploid cells of a direct 
relation (mother, father, Son or daughter). In this case, it is a 
trivial matter to one skilled in the art to deduce the sister 
haplotype by Subtracting the known haplotype from the dip 
loid genotype measured by molecular assay. For example, if 
a particular locus is heterozygous, an unknown parental hap 
lotype is the opposite allele from the known parental haplo 
type. 

In another case, the noisy haploid data of the parent may be 
known from molecular biological haplotyping of individual 
parental haploid cells, such as a sperm cell, or from individual 
chromosomes, which may be isolated by various methods 
including magnetic beads and flow cytometry. In this case, the 
same procedure can be used as above, except that the deter 
mined haplotype will be as noisy as the measured haplotype. 

There are also methods for deducing haploid data sets 
directly from diploid data, using statistical methods that ulti 
lize known haplotype blocks in the general population (Such 
as those created for the public Hapmap project). A haplotype 
block is essentially a series of correlated alleles that occur 
repeatedly in a variety of populations. Since these haplotype 
blocks are often ancient and common, they may be used to 
predict haplotypes from diploid genotypes. The parents 
inferred haplotype blocks can then be used as input for the 
method described herein to clean the noisy data from the 
embryos. Publicly available algorithms that would accom 
plish this task include an imperfect phylogeny approach, 
Bayesian approaches based on conjugate priors, and priors 
from population genetics. Some of these algorithms use hid 
den Markov models. One study used public trio and unrelated 
individual data to demonstrate that these algorithms perform 
with error rates as low as 0.05% across 1 MB of sequence. 
However, as expected, accuracy is lower for individuals with 
rare haplotype blocks. In one estimate, computational meth 
ods failed to phase as many as 5.1% of loci with minor allele 
frequency of 20%. 

In one embodiment of the invention, genetic data from 
multiple blastomeres taken from different embryos during an 
IVF cycle is used to infer the haplotype blocks of the parents 
with greater reliability. 
Techniques for Screening for Aneuploidy using High and 
Medium Throughput Genotyping 

In one embodiment of the system the measured genetic 
data can be used to detect for the presence of aneuploides 
and/or mosaicism in an individual. Disclosed herein are sev 
eral methods of using medium or high-throughput genotyp 
ing to detect the number of chromosomes or DNA segment 
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copy number from amplified or unamplified DNA from tissue 
samples. The goal is to estimate the reliability that can be 
achieved in detecting certain types of aneuploidy and levels of 
mosaicism using different quantitative and/or qualitative 
genotyping platforms such as ABI TAQMAN, MIPS, or 
Microarrays from ILLUMINA, AGILENT and AFFME 
TRIX. In many of these cases, the genetic material is ampli 
fied by PCR before hybridization to probes on the genotyping 
array to detect the presence of particular alleles. How these 
assays are used for genotyping is described elsewhere in this 
disclosure. 

Described below are several methods for screening for 
abnormal numbers of DNA segments, whether arising from 
deletions, aneuploides and/or mosaicism. The methods are 
grouped as follows: (i) quantitative techniques without mak 
ing allele calls; (ii) qualitative techniques that leverage allele 
calls; (iii) quantitative techniques that leverage allele calls; 
(iv) techniques that use a probability distribution function for 
the amplification of genetic data at each locus. All methods 
involve the measurement of multiple loci on a given segment 
of a given chromosome to determine the number of instances 
of the given segment in the genome of the target individual. In 
addition, the methods involve creating a set of one or more 
hypotheses about the number of instances of the given seg 
ment; measuring the amount of genetic data at multiple loci 
on the given segment; determining the relative probability of 
each of the hypotheses given the measurements of the target 
individual’s genetic data; and using the relative probabilities 
associated with each hypothesis to determine the number of 
instances of the given segment. Furthermore, the methods all 
involve creating a combined measurement M that is a com 
puted function of the measurements of the amounts of genetic 
data at multiple loci. In all the methods, thresholds are deter 
mined for the selection of each hypothesis H, based on the 
measurement M, and the number of loci to be measured is 
estimated, in order to have a particular level of false detec 
tions of each of the hypotheses. 

The probability of each hypothesis given the measurement 
M is P(H,M)=P(MIH)P(H,)/P(M). Since P(M) is indepen 
dent of FL, we can determine the relative probability of the 
hypothesis given M by considering only P(MIH)P(H,). In 
what follows, in order to simplify the analysis and the com 
parison of different techniques, we assume that P(H,) is the 
same for all {R}, so that we can compute the relative prob 
ability of all the P(H, M) by considering only P(MIH). Con 
sequently, our determination of thresholds and the number of 
locito be measured is based on having particular probabilities 
of selecting false hypotheses under the assumption that P(H,) 
is the same for all {H}. It will be clear to one skilled in the art 
after reading this disclosure how the approach would be 
modified to accommodate the fact that P(H,) varies for dif 
ferent hypotheses in the set {H}. In some embodiments, the 
thresholds are set so that hypothesis H, is selected which 
maximizes P(H,M) over all i. However, thresholds need not 
necessarily be set to maximize P(HM), but rather to achieve 
aparticular ratio of the probability of false detections between 
the different hypotheses in the set {H}. 

It is important to note that the techniques referred to herein 
for detecting aneuploides can be equally well used to detect 
for uniparental disomy, unbalanced translocations, and for 
the sexing of the chromosome (male or female; XY or XX). 
All of the concepts concern detecting the identity and number 
of chromosomes (or segments of chromosomes) present in a 
given sample, and thus are all addressed by the methods 
described in this document. It should be obvious to one 
skilled in the art how to extend any of the methods described 
herein to detect for any of these abnormalities. 
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The Concept of Matched Filtering 
The methods applied here are similar to those applied in 

optimal detection of digital signals. It can be shown using the 
Schwartz inequality that the optimal approach to maximizing 
Signal to Noise Ratio (SNR) in the presence of normally 
distributed noise is to build an idealized matching signal, or 
matched filter, corresponding to each of the possible noise 
free signals, and to correlate this matched signal with the 
received noisy signal. This approach requires that the set of 
possible signals are known as well as the statistical distribu 
tion—mean and Standard Deviation (SD)—of the noise. 
Herein is described the general approach to detecting whether 
chromosomes, or segments of DNA, are present or absent in 
a sample. No differentiation will be made between looking 
for whole chromosomes or looking for chromosome seg 
ments that have been inserted or deleted. Both will be referred 
to as DNA segments. It should be clear after reading this 
description how the techniques may be extended to many 
scenarios of aneuploidy and sex determination, or detecting 
insertions and deletions in the chromosomes of embryos, 
fetuses or born children. This approach can be applied to a 
wide range of quantitative and qualitative genotyping plat 
forms including TAQMAN, qPCR, ILLUMINA Arrays, 
AFFMETRIX Arrays, AGILENT Arrays, the MIPS kit etc. 
Formulation of the General Problem 
Assume that there are probes at SNPs where two allelic 

variations occur, X and y. At each locus i, i=1 ... N, data is 
collected corresponding to the amount of genetic material 
from the two alleles. In the TAOMAN assay, these measures 
would be, for example, the cycle time, Cat which the level of 
each allele-specific dye crosses a threshold. It will be clear 
how this approach can be extended to different measurements 
of the amount of genetic material at each locus or correspond 
ing to eachallele at a locus. Quantitative measurements of the 
amount of genetic material may be nonlinear, in which case 
the change in the measurement of a particularlocus caused by 
the presence of the segment of interest will depend on how 
many other copies of that locus exist in the sample from other 
DNA segments. In some cases, a technique may require linear 
measurements, such that the change in the measurement of a 
particular locus caused by the presence of the segment of 
interest will not depend on how many other copies of that 
locus exist in the sample from other DNA segments. An 
approach is described for how the measurements from the 
TAQMAN or qPCR assays may be linearized, but there are 
many other techniques for linearizing nonlinear measure 
ments that may be applied for different assays. 
The measurements of the amount of genetic material of 

allele X at loci 1 . . . N is given by data did. . . . d.N. 
Similarly for alleley, did. . . . dN). Assume that each 
segmentjhas alleles a, a ... a?y where each elementa, is 
either X ory. Describe the measurement data of the amount of 
genetic material of allele X as de S+Uu, where S is the signal 
and U is a disturbance. The signals, f(a . . . . . a) . . . 
f(aw. ..., a y) where f is the mapping from the set of alleles 
to the measurement, and J is the number of DNA segment 
copies. The disturbance vector U is caused by measurement 
error and, in the case of nonlinear measurements, the pres 
ence of other genetic material besides the DNA segment of 
interest. Assume that measurement errors are normally dis 
tributed and that they are large relative to disturbances caused 
by nonlinearity (see section on linearizing measurements) so 
that U, sin, where n, has variance O, and vector n, is nor 
mally distributed -NCOR), R=E(nn."). Now, assume some 
filter h is applied to this data to perform the measurement 
m=hd =h's,+hu. In order to maximize the ratio of signal 
to noise (h's, ?h'n,) it can be shown that his given by the 
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matched filter huR's, where u is a scaling constant. The 
discussion for allele X can be repeated for alleley. 
Method 1a: Measuring Aneuploidy or Sex by Quantitative 
Techniques that do not Make Allele Calls when the Mean and 
Standard Deviation for Each Locus is Known 
Assume for this section that the data relates to the amount 

of genetic material at a locus irrespective of allele value (e.g. 
using qPCR), or the data is only for alleles that have 100% 
penetrance in the population, or that data is combined on 
multiple alleles at each locus (see section onlinearizing mea 
Surements)) to measure the amount of genetic material at that 
locus. Consequently, in this section one may refer to data di 
and ignored. Assume also that there are two hypotheses: ho 
that there are two copies of the DNA segment (these are 
typically not identical copies), and h that there is only 1 copy. 
For each hypothesis, the data may be described as d(ho)—s, 
(ho)+n, and d. (h)-S,(h)+n, respectively, where S(ho) is 
the expected measurement of the genetic material at locus i 
(the expected signal) when two DNA segments are present 
and s(h) is the expected data for one segment. Construct the 
measurement for each locus by differencing out the expected 
signal for hypothesis ho: m, d-s(h). If h is true, then the 
expected value of the measurement is E(m)=S(h)-s(ho). 
Using the matched filter concept discussed above, set h=(1/ 
N)R’(s, (h)-S,(ho)). The measurement is described as 
m-h'd, (1/N)X, v?(S,(h)-S,(ho))/O, )m. 

If h is true, the expected value of E(mh)-m= 
(1/N)X, . . . Ms.,(h)-S,(ho))/O, and the standard devia 
tion of m is O, (1/N)X, (S,(h)-S,(ho))/O,)/ 
O,’-(1/N)X, MS,(h)-S,(ho))/O,. 

Ifho is true, the expected value of m is E(mlho)-mo-0 and 
the standard deviation of m is again 
(1/N)X, MS,(h)-s, (ho))/O,. 

FIG. 3 illustrates how to determine the probability of false 
negatives and false positive detections. Assume that a thresh 
oldt is set half-way between m and m in order to make the 
probability of false negatives and false positives equal (this 
need not be the case as is described below). The probability of 
a false negative is determined by the ratio of (m-t)/O = 
(m-mo)/(2O). “5-Sigma' statistics may be used so that 
the probability of false negatives is 1-normcdf(5,0,1)=2.87e 
7. In this case, the goal is for (m-mo)/(2O,to)>5 or 10sqrt 
((1/N)X, x(S,(h)-S,(ho))/O, )<(1/N)X, MS, 
(h)-S,(ho))/O, for Sqrt(X, MS, (h)-S,(ho))/O,.)>10. 
In order to compute the size of N. Mean Signal to Noise Ratio 
can be computed from aggregated data: MSNR= 
(1/N)X, . . . Ms. (h)-S,(ho))/O,. N can then be found 
from the inequality above: sqrt(N)-sqrt(MSNR)>10 or 
N>1 OO/MSNR. 

This approach was applied to data measured with the TAC 
MAN Assay from Applied BioSystems using 48 SNPs on the 
X chromosome. The measurement for each locus is the time, 
C. that it takes the die released in the well corresponding to 
this locus to exceed a threshold. Sample 0 consists of roughly 
0.3 ng (50 cells) of total DNA per well of mixed female origin 
where Subjects had two X chromosomes; Sample 1 consisted 
of roughly 0.3 ng of DNA per well of mixed male origin 
where subject had one X chromosome. FIG. 4 and FIG. 5 
show the histograms of measurements for Samples 1 and 0. 
The distributions for these samples are characterized by 
mo-29.97: SD 1.32, m=31.44, SD=1.592. Since this data 
is derived from mixed male and female samples, some of the 
observed SD is due to the different allele frequencies at each 
SNP in the mixed samples. In addition, some of the observed 
SD will be due to the varying efficiency of the different assays 
at each SNP, and the differing amount of dye pipetted into 
each well. FIG. 6 provides a histogram of the difference in the 
measurements at each locus for the male and female sample. 
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The mean difference between the male and female samples is 
1.47 and the SD of the difference is 0.99. While this SD will 
still be subject to the differentallele frequencies in the mixed 
male and female samples, it will no longer be affected the 
different efficiencies of each assay at each locus. Since the 
goal is to differentiate two measurements each with a roughly 
similar SD, the adjusted SD may be approximated for each 
measurement for all loci as 0.99/sqrt(2)=0.70. Two runs were 
conducted for every locus in order to estimate O, for the assay 
at that locus so that a matched filter could be applied. A lower 
limit of O, was set at 0.2 in order to avoid statistical anomalies 
resulting from only two runs to compute O,. Only those loci 
(numbering 37) for which there were no allele dropouts over 
both alleles, over both experiment runs and over both male 
and female samples were used in the plots and calculations. 
Applying the approach above to this data, it was found that 
MSNR=2.26, hence N=25°/2.262=17 loci. 
Method 1b: Measuring Aneuploidy or Sex by Quantitative 
Techniques that do not Make Allele Calls when the Mean and 
Std. Deviation is not Known or is Uniform 
When the characteristics of each locus are not known well, 

the simplifying assumptions that all the assays at each locus 
will behave similarly can be made, namely that E(m)and O, 
are constant across all loci i, so that it is possible to refer 
instead only to E(m) and Oy. In this case, the matched filter 
ing approach m-h'd, reduces to finding the mean of the 
distribution of d. This approach will be referred to as com 
parison of means, and it will be used to estimate the number 
ofloci required for different kinds of detection using real data. 
As above, consider the scenario when there are two chro 

mosomes present in the sample (hypothesis ho) or one chro 
mosomepresent (h). Forho, the distribution is N(LLO) and 
for h the distribution is N(L.O., ). Measure each of the dis 
tributions using No and N samples respectively, with mea 
sured sample means and SDS m, mos, and so. The means 
can be modeled as random variables Mo, M that are normally 
distributed as Mo-N(lo, o/No) and M-NCLL, O,/N). 
Assume N and No are large enough (>30) So that one can 
assume that M-N(m, s/N) and Mo-N(mo, so/No). In 
order to test whether the distributions are different, the dif 
ference of the means test may be used, where dm-mo. The 
variance of the random variable D is of O'/N+O/No 
which may be approximated as Ofs/N+So/No-Givenho, 
E(d)=0; given h, E(d)-L-Lo. Different techniques for mak 
ing the call between h for he will now be discussed. 

Data measured with a different run of the TAOMAN Assay 
using 48 SNPs on the X chromosome was used to calibrate 
performance. Sample 1 consists of roughly 0.3 ng of DNA per 
well of mixed male origin containing one X chromosome; 
sample 0 consisted of roughly 0.3 ng of DNA per well of 
mixed female origin containing two X chromosomes. N=42 
and No. 45. FIG. 7 and FIG. 8 show the histograms for 
samples 1 and 0. The distributions for these samples are 
characterized by m=32.259, s =1.460, O=S/sqrt(N) 
=0.225: mo-30.75; so-1.202, OS/sqrt(N)=0.179. For 
these samples d=1.509 and of 0.2879. 

Since this data is derived from mixed male and female 
samples, much of the standard deviation is due to the different 
allele frequencies at each SNP in the mixed samples. SD is 
estimated by considering the variations in C, for one SNP at a 
time, over multiple runs. This data is shown in FIG. 9. The 
histogram is symmetric around 0 since C, for each SNP is 
measured in two runs or experiments and the mean value of Ct 
for each SNP is subtracted out. The average std. dev. across 20 
SNPs in the mixed male sample using two runs is s=0.597. 
This SD will be conservatively used for both male and female 
samples, since SD for the female sample will be smaller than 
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for the male sample. In addition, note that the measurement 
from only one dye is being used, since the mixed samples are 
assumed to be heterozygous for all SNPs. The use of both 
dyes requires the measurements of each allele at a locus to be 
combined, which is more complicated (see section onlinear 
izing measurements). Combining measurements on both 
dyes would double signal amplitude and increase noise 
amplitude by roughly sqrt(2), resulting in an SNR improve 
ment of roughly sqrt(2) or 3 dB. 
Detection Assuming No Mosaicism and No Reference 
Sample 
Assume that mo is known perfectly from many experi 

ments, and every experiment runs only one sample to com 
pute m to compare with mo. N is the number of assays and 
assume that each assay is a different SNP locus. A threshold 
t can be set halfway between mo and m to make the likeli 
hood of false positives equal the number of false negatives, 
and a sample is labeled abnormal if it is above the threshold. 
Assume S-S-S-0.597 and use the 5-sigma approach so that 
the probability of false negatives or positives is 1-normcdf(5. 
0,1)=2.87e-7. The goal is for 5s/sqrt(N)<(m-mo)/2, hence 
N=100 s/(m-mo)=16. Now, an approach where the prob 
ability of a false positive is allowed to be higher than the 
probability of a false negatives, which is the harmful scenario, 
may also be used. If a positive is measured, the experiment 
may be rerun. Consequently, it is possible to say that the 
probability of a false negative should be equal to the square of 
the probability of a false positive. Consider FIG. 3, let 
t=threshold, and assume Sigma 0-Sigma 1 =s. Thus 
(1-normcdf((t-mo)/s,0,1))=1-normcdf((m-t)/s,0,1). Solv 
ing this, it can be shown that tmo-0.32(m-mo). Hence the 
goal is for 5S/sqrt(N)<m-mo-0.32 (m-mo) (m-mo)/ 
1.47, hence N=(5)(1.47?)s/(m-m)=9. 
Detection with Mosaicism without Running a Reference 
Sample 
Assume the same situation as above, except that the goal is 

to detect mosaicism with a probability of 97.7% (i.e. 2-sigma 
approach). This is better than the standard approach to amnio 
centesis which extracts roughly 20 cells and photographs 
them. If one assumes that 1 in 20 cells is aneuploid and this is 
detected with 100% reliability, the probability of having at 
least one of the group being aneuploid using the standard 
approach is 1-0.95'=64%. If 0.05% of the cells are aneup 
loid (call this sample 3) then m=0.95 mo-0.05 m and var 
(m)=(0.95so-0.05s')/N. Thus std(m)2<(ma-mo)/ 
2=>sqrt(0.95so-0.05s)/sqrt(N)<0.05(m-m)/ 
4=>N=16(0.95s+0.05s)/(0.05°(m-m))=1001. Note 
that using the goal of 1-Sigma statistics, which is still better 
than can be achieved using the conventional approach (i.e. 
detection with 84.1% probability), it can be shown in a similar 
manner that N=250. 
Detection with No Mosaicism and Using a Reference Sample 

Although this approach may not be necessary, assume that 
every experiment runs two samples in order to compare m 
with truth sample m. Assume that N=N=No. Compute 
d-m-mo and, assuming O-O set a thresholdt (m+m)/2 
so that the probability of false positives and false negatives is 
equal. To make the probability of false negatives 2.87e-7, it 
must be the case that (m1-m2)/2>5sqrt(s°/N+s/ 
N)>N=100(s?--s)/(m 1-m2)=32. 
Detection with Mosaicism and Running a Reference Sample 
As above, assume the probability of false negatives is 2.3% 

(i.e. 2-sigma approach). If 0.05% of the cells are aneuploid 
(call this sample 3) then m=0.95mo-0.05m and var(m)= 
(0.95so--0.05s)/N. d-m-m-, and Of-(1.95so-0.05s)/ 
N. It must be that std(m)2<(mo-m)/2=>sqrt(1.95s.-- 
0.05s )/sqrt(N)-0.05(m-m)/4=>N=16(1.95s...+0.05s')/ 
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(0.05 (mi-m2))–2002. Again using 1-Sigma approach, it 
can be shown in a similar manner that N=500. 

Consider the case if the goal is only to detect 5% mosaicism 
with a probability of 64% as is the current state of the art. 
Then, the probability of false negative would be 36%. In other 
words, it would be necessary to find x such that 1-normcdf 
(x,0,1)=36%. Thus N=4(0.362)(1.95s.--0.05s)/(0.05 
(m-m))=65 for the 2-sigma approach, or N=33 for the 
1-sigma approach. Note that this would result in a very high 
level of false positives, which needs to be addressed, since 
such a level of false positives is not currently a viable alter 
native. 

Also note that if N is limited to 384 (i.e. one 384 well 
TAQMAN plate per chromosome), and the goal is to detect 
mosaicism with a probability of 97.72%, then it will be pos 
sible to detect mosaicism of 8.1% using the 1-sigma 
approach. In order to detect mosaicism with a probability of 
84.1% (or with a 15.9% false negative rate), then it will be 
possible to detect mosaicism of 5.8% using the 1-sigma 
approach. To detect mosaicism of 19% with a confidence of 
97.72% it would require roughly 70 loci. Thus one could 
screen for 5 chromosomes on a single plate. 
The summary of each of these different scenarios is pro 

vided in FIG. 20. Also included in this table are the results 
generated from qPCR and the SYBR assays. The methods 
described above were used and the simplifying assumption 
was made that the performance of the qPCR assay for each 
locus is the same. FIG. 10 and FIG. 11 show the histograms 
for samples 1 and 0, as described above. No-N=47. The 
distributions of the measurements for these samples are char 
acterized by m=27.65, s—1.40, O=S/sqrt(N)=0.204: 
mo-26.64; so-1.146, OS/sqrt(N)=0.167. For these 
samples d=1.01 and O-0.2636. FIG. 12 shows the difference 
between C, for the male and female samples for each locus, 
with a standard deviation of the difference over all loci of 
0.75. The SD was approximated for each measurement of 
each locus on the male or female sample as 0.75/sqrt(2)=0.53. 
Method 2: Qualitative Techniques that Use Allele Calls 

In this section, no assumption is made that the assay is 
quantitative. Instead, the assumption is that the allele calls are 
qualitative, and that there is no meaningful quantitative data 
coming from the assays. This approach is Suitable for any 
assay that makes an allele call. FIG. 13 describes how differ 
ent haploid gametes form during meiosis, and will be used to 
describe the different kinds of aneuploidy that are relevant for 
this section. The best algorithm depends on the type of aneu 
ploidy that is being detected. 

Considera situation where aneuploidy is caused by a third 
segment that has no section that is a copy of either of the other 
two segments. From FIG. 13, the situation would arise, for 
example, if p and p, orp and ps, both arose in the child cell 
in addition to one segment from the other parent. This is very 
common, given the mechanism which causes aneuploidy. 
One approach is to start off with a hypothesis he that there are 
two segments in the cell and what these two segments are. 
Assume, for the purpose of illustration, that his for p and m 
from FIG. 13. In a preferred embodiment this hypothesis 
comes from algorithms described elsewhere in this docu 
ment. Hypothesis his that there is an additional segment that 
has no sections that are a copy of the other segments. This 
would arise, for example, if p or m was also present. It is 
possible to identify all loci that are homozygous in p and m. 
Aneuploidy can be detected by searching for heterozygous 
genotype calls at loci that are expected to be homozygous. 
Assume every locus has two possible alleles, X and y. Let 

the probability of alleles X and y in general be p, and p, 
respectively, and p,+p, 1. Ifh, is true, then for each locusi for 
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which p and m are homozygous, then the probability of a 
non-homozygous call is p, or p, depending on whether the 
locus is homozygous in X or y respectively. Note: based on 
knowledge of the parent data, i.e. p. p. p and m, m2, m3, it 
is possible to further refine the probabilities for having non 
homozygous alleles X or y at each locus. This will enable 
more reliable measurements for each hypothesis with the 
same number of SNPs, but complicates notation, so this 
extension will not be explicitly dealt with. It should be clear to 
someone skilled in the art how to use this information to 
increase the reliability of the hypothesis. 
The probability of allele dropouts is p. The probability of 

finding a heterozygous genotype at locus iispo, given hypoth 
esis ho and p, given hypothesis h. 

Given ho: po 0 
Given h: pip,(1-p) or pip,(1-p) depending on 

whether the locus is homozygous for X or y. 
Create a measurement m=1/N, X, I, where I, is an 

indicator variable, and is 1 if a heterozygous call is made and 
0 otherwise. N is the number of homozygous loci. One can 
simplify the explanation by assuming that p, p, and pop, 
for all loci are the same two values po and p. Given ho 
E(m) po-0 and oftopo (1-po)/N. Given he E(m) p and 
of, , p, (1-p)/N,. Using 5 sigma-statistics, and making 
the probability of false positives equal the probability of false 
negatives, it can be shown that (p-po)/2>5O, hence 
N=100(po(1-po)+p, (1-p))/(p-po). For 2-sigma confi 
dence instead of 5-sigma confidence, it can be shown that 
N, 4.2(po(1-po)+p, (1-p))/(p-po). 

It is necessary to sample enough loci N that there will be 
Sufficient available homozygous loci N. Such that the 
confidence is at least 97.7% (2-sigma). Characterize 
NX, J, where J, is an indicator variable of value 
1 if the locus is homozygous and 0 otherwise. The probability 
of the locus being homozygous is p, +p,. Consequently, 
E(N)-N(p,+p,) and Ov-f-N(p,+p,)(1-p,- 
p.). To guarantee N is large enough with 97.7% confidence, 
it must be that E(N)-2Owl, N, where N, is found 
from above. 

For example, if one assumes p, 0.3, p, p, 0.5, one can 
find N-186 and N=391 for 5-sigma confidence. Similarly, it 
is possible to show that N=30 and N=68 for 2-sigma confi 
dence i.e. 97.7% confidence in false negatives and false posi 
tives. 

Note that a similar approach can be applied to looking for 
deletions of a segment when h is the hypothesis that two 
known chromosome segment are present, and h is the 
hypothesis that one of the chromosome segments is missing. 
For example, it is possible to look for all of those loci that 
should be heterozygous but are homozygous, factoring in the 
effects of allele dropouts as has been done above. 

Also note that even though the assay is qualitative, allele 
dropout rates may be used to provide a type of quantitative 
measure on the number of DNA segments present. 
Method 3: Making use of Known Alleles of Reference 
Sequences, and Quantitative Allele Measurements 

Here, it is assumed that the alleles of the normal or 
expected set of segments are known. In order to check for 
three chromosomes, the first step is to clean the data, assum 
ing two of each chromosome. In a preferred embodiment of 
the invention, the data cleaning in the first step is done using 
methods described elsewhere in this document. Then the 
signal associated with the expected two segments is Sub 
tracted from the measured data. One can then look for an 
additional segment in the remaining signal. A matched filter 
ing approach is used, and the signal characterizing the addi 
tional segment is based on each of the segments that are 
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believed to be present, as well as their complementary chro 
mosomes. For example, considering FIG. 13, if the results of 
PS indicate that segments p2 and m1 are present, the tech 
nique described here may be used to check for the presence of 
p2, p3, m1 and m4 on the additional chromosome. If there is 
an additional segment present, it is guaranteed to have more 
than 50% of the alleles in common with at least one of these 
test signals. Note that another approach, not described in 
detail here, is to use an algorithm described elsewhere in the 
document to clean the data, assuming an abnormal number of 
chromosomes, namely 1, 3, 4 and 5 chromosomes, and then to 
apply the method discussed here. The details of this approach 
should be clear to someone skilled in the art after having read 
this document. 

Hypothesis ho is that there are two chromosomes with 
allele vectors a. a. Hypothesis h is that there is a third 
chromosome with allele Vectoras. Using a method described 
in this document to clean the genetic data, or another tech 
nique, it is possible to determine the alleles of the two seg 
ments expected by ho: al-ali . . . awl and a2a2 . . . aw 
where each elementa, is either X ory. The expected signal is 
created for hypothesis ho: So fo(a1, a2)... fo(av, a 2x), 
Sof (a1, a2). . . f(aly aw) where f f, describe the 
mapping from the set of alleles to the measurements of each 
allele. Given ho, the data may be described as di So--n, 
n-N(0.O.); d. So,+n, n-N(0.O.). Create a measure 
ment by differencing the data and the reference signal: 
m, d's, mid-s. The full measurement vector is 
m=m, m,'17. 
Now, create the signal for the segment of interest—the 

segment whose presence is suspected, and will be sought in 
the residual based on the assumed alleles of this segment: 
as as . . . a. Describe the signal for the residual as: 
s,s, s'' where S, f(as ) . . . f(asv), S. 
If (as)... f(a) where f(a)=8, if as X and 0 other 
wise, f(a)=8, if asy and 0 otherwise. This analysis 
assumes that the measurements have been linearized (see 
section below) so that the presence of one copy of allele X at 
locus i generates data 8+n, and the presence of K, copies of 
the allele X at locus i generates data Kö+n. Note however 
that this assumption is not necessary for the general approach 
described here. Given h, if allele as X then m, 6+n. 
m, n, and if asy then m, n, m-o,+n. Consequently, 
a matched filter h=(1/N)R's, can be created where R diag 
(IO, ... O, O, ... O,x). The measurement is m-h'd. 

ho, m-(1/N)X-1. Sino. +sin, o, 

In order to estimate the number of SNPs required, make the 
simplifying assumptions that all assays for all alleles and all 
loci have similar characteristics, namely that 8, 6, 8 and 
O, O, O for i=1 ... N. Then, the mean and standard devia 
tion may be found as follows: 

Now compute a signal-to-noise ratio (SNR) for this test of h 
versusho. The signal is mi-moo/of, and the noise variance 
of this measurement is O,--ö, -26/(No). Conse 
quently, the SNR for this test is (Ö/o)/(26/(No'))=Nö/ 
(2O). 
Compare this SNR to the scenario where the genetic infor 

mation is simply Summed at each locus without performing a 
matched filtering based on the allele calls. Assume that h=(1/ 
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N)ii wherei is the vector of Nones, and make the simplifying 
assumptions as above that 8, 8, 8 and O, O, O for 
i=1 ... N. For this scenario, it is straightforward to show that 
if m=hd: 

Consequently, the SNR for this test is N8/(4o). In other 
words, by using a matched filter that only Sums the allele 
measurements that are expected for segment as the number 
of SNPs required is reduced by a factor of 2. This ignores the 
SNR gain achieved by using matched filtering to account for 
the different efficiencies of the assays at each locus. 

Note that if we do not correctly characterize the reference 
signals s, and s, then the SD of the noise or disturbance on 
the resulting measurement signals m, and m will be 
increased. This will be insignificant if Ö3O, but otherwise it 
will increase the probability of false detections. Conse 
quently, this technique is well Suited to test the hypothesis 
where three segments are present and two segments are 
assumed to be exact copies of each other. In this case, s, and 
s, will be reliably known using techniques of data cleaning 
based on qualitative allele calls described elsewhere. In one 
embodiment method 3 is used in combination with method 2 
which uses qualitative genotyping and, aside from the quan 
titative measurements from allele dropouts, is not able to 
detect the presence of a second exact copy of a segment. 
We now describe another quantitative technique that makes 

use of allele calls. The method involves comparing the rela 
tive amount of signal at each of the four registers for a given 
allele. One can imagine that in the idealized case involving a 
single, normal cell, where homogenous amplification occurs, 
(or the relative amounts of amplification are normalized), 
four possible situations can occur: (i) in the case of a het 
erozygous allele, the relative intensities of the four registers 
will be approximately 1:1:0:0, and the absolute intensity of 
the signal will correspond to one base pair; (ii) in the case of 
a homozygous allele, the relative intensities will be approxi 
mately 1:0:0:0, and the absolute intensity of the signal will 
correspond to two base pairs; (iii) in the case of an allele 
where ADO occurs for one of the alleles, the relative intensi 
ties will be approximately 1:0:0:0, and the absolute intensity 
of the signal will correspond to one base pair, and (iv) in the 
case of an allele where ADO occurs for both of the alleles, the 
relative intensities will be approximately 0:0:0:0, and the 
absolute intensity of the signal will correspond to no base 
pairs. 

In the case of aneuploides, however, different situations 
will be observed. For example, in the case of trisomy, and 
there is no ADO, one of three situations will occur: (i) in the 
case of a triply heterozygous allele, the relative intensities of 
the four registers will be approximately 1:1:1:0, and the abso 
lute intensity of the signal will correspond to one base pair; 
(ii) in the case where two of the alleles are homozygous, the 
relative intensities will be approximately 2:1:0:0, and the 
absolute intensity of the signal will correspond to two and one 
base pairs, respectively; (iii) in the case where are alleles are 
homozygous, the relative intensities will be approximately 
1:0:0:0, and the absolute intensity of the signal will corre 
spond to three base pairs. If allele dropout occurs in the case 
of an allele in a cell with trisomy, one of the situations 
expected for a normal cell will be observed. In the case of 
monosomy, the relative intensities of the four registers will be 
approximately 1:0:0:0, and the absolute intensity of the signal 
will correspond to one base pair. This situation corresponds to 
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the case of a normal cell where ADO of one of the alleles has 
occurred, however in the case of the normal cell, this will only 
be observed at a small percentage of the alleles. In the case of 
uniparental disomy, where two identical chromosomes are 
present, the relative intensities of the four registers will be 
approximately 1:0:0:0, and the absolute intensity of the signal 
will correspond to two base pairs. In the case of UPD where 
two different chromosomes from one parent are present, this 
method will indicate that the cell is normal, although further 
analysis of the data using other methods described in this 
patent will uncover this. 

In all of these cases, either in cells that are normal, have 
aneuploides or UPD, the data from one SNP will not be 
adequate to make a decision about the state of the cell. How 
ever, if the probabilities of each of the above hypothesis are 
calculated, and those probabilities are combined for a suffi 
cient number of SNPs on a given chromosome, one hypoth 
esis will predominate, it will be possible to determine the state 
of the chromosome with high confidence. 
Methods for Linearizing Quantitative Measurements 
Many approaches may be taken to linearize measurements 

of the amount of genetic material at a specific locus So that 
data from different alleles can be easily summed or differ 
enced. We first discuss a generic approach and then discuss an 
approach that is designed for a particular type of assay. 
Assume data d, refers to a nonlinear measurement of the 

amount of genetic material of allele X at locus i. Create a 
training set of data using N measurements, where for each 
measurement, it is estimated or known that the amount of 
genetic material corresponding to data d is f. The training 
set f i=1 ... N, is chosen to span all the different amounts 
of genetic material that might be encountered in practice. 
Standard regression techniques can be used to train a function 
that maps from the nonlinear measurement, d, to the expec 
tation of the linear measurement, E(B-). For example, a linear 
regression can be used to train a polynomial function of order 
P. such that E(B)=1 d, d, d. c where c is the vector of 
coefficients c-coci... c. 7. To train this linearizing function, 
we create a vector of the amount of genetic material for N 
measurements (3,-If, ...f3, and a matrix of the measured 
data raised to powers 0... P: D-1 d, d, ... d1 d2 
d?... dal'...1 dwd... d'I''. The coefficients can 
then be found using a least squares fit c=(DD)'DB. 

Rather than depend on generic functions such as fitted 
polynomials, we may also create specialized functions for the 
characteristics of a particular assay. We consider, for 
example, the TAOMAN assay or a qPCR assay. The amount 
of die for allele X and some locusi, as a function of time up to 
the point where it crosses some threshold, may be described 
as an exponential curve with a bias offset: g(t) C+B,exp 
(Y,t) where C is the bias offset, Y, is the exponential growth 
rate, and f corresponds to the amount of genetic material. To 
cast the measurements interms off, compute the parameter 
a by looking at the asymptotic limit of the curve g(-CO) and 
then may find B and Y by taking the log of the curve to 
obtain log(g(t)-O.) log(B)+Y,t and performing a standard 
linear regression. Once we have values for C. and Y, another 
approach is to compute B from the time, t, at which the 
threshold g is exceeded. B (g-C)exp(-Y,t). This will be 
a noisy measurement of the true amount of genetic data of a 
particular allele. 

Whatever techniques is used, we may model the linearized 
measurement as B. Kö+n, where K is the number of cop 
ies of allele X, O, is a constant for allele X and locus i, and 
n-N(0.O.) where Oa, can be measured empirically. 
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Method 4: Using a Probability Distribution Function for the 
Amplification of Genetic Data at Each Locus 
The quantity of material for a particular SNP will depend 

on the number of initial segments in the cell on which that 
SNP is present. However, due to the random nature of the 
amplification and hybridization process, the quantity of 
genetic material from a particular SNP will not be directly 
proportional to the starting number of segments. Let q1, q, 
q1, q, represent the amplified quantity of genetic material 
for a particular SNPs for each of the four nucleic acids 
(A.C.T.G) constituting the alleles. Note that these quantities 
may be exactly Zero, depending on the technique used for 
amplification. Also note that these quantities are typically 
measured from the intensity of signals from particular hybrid 
ization probes. This intensity measurement can be used 
instead of a measurement of quantity, or can be converted into 
a quantity estimate using standard techniques without chang 
ing the nature of the invention. Let qs be the sum of all the 
genetic material generated from all alleles of a particular 
SNP: q=q+qt+qt+qc. Let N be the number of seg 
ments in a cell containing the SNPs. N is typically 2, but may 
be 0, 1 or 3 or more. For any high or medium throughput 
genotyping method discussed, the resulting quantity of 
genetic material can be represented as q. (A+A)N+0. 
where A is the total amplification that is either estimated 
a-priori or easily measured empirically, Ao is the error in the 
estimate of A for the SNPs, and 0 is additive noise introduced 
in the amplification, hybridization and other process for that 
SNP. The noise terms A and 0 are typically large enough 
that q will not be a reliable measurement of N. However, the 
effects of these noise terms can be mitigated by measuring 
multiple SNPs on the chromosome. Let S be the number of 
SNPs that are measured on a particular chromosome, Such as 
chromosome 21. It is possible to generate the average quan 
tity of genetic material over all SNPs on a particular chromo 
Some as follows: 

1 1 
d = Xa, = NA+ X.A.N+8, 

(16) 

Assuming that Ao and 0 are normally distributed random 
variables with 0 means and variances of4. and ofo, one can 
model q=NA+(p where p is a normally distributed random 
variable with 0 mean and variance 

(No, +ri). 
Consequently, if sufficient number of SNPs are measured on 
the chromosome such that S>(No-oo), then N=q/A 
can be accurately estimated. S 

In another embodiment, assume that the amplification is 
according to a model where the signal level from one SNP is 
s=a+C. where (a+C) has a distribution that looks like the 
picture in FIG. 14A, left. The delta function at 0 models the 
rates of allele dropouts of roughly 30%, the mean is a, and if 
there is no allele dropout, the amplification has uniform dis 
tribution from 0 to ao. In terms of the mean of this distribution 
a is found to be a 2.86a. Now model the probability density 
function of C. using the picture in FIG. 14B, right. Lets be the 
signal arising from cloci; let n be the number of segments; let 
C, be a random variable distributed according to FIGS. 14A 
and 14B that contributes to the signal from locus i; and let O 
be the standard deviation for all {C}. S. anc+X, C. e Mis 

mean(s) anc, Std(s)=Sqrt(n)O. If O is computed according 
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to the distribution in FIG. 14A, right, it is found to be 
O=0.907a. We can find the number of segments from n=s/ 
(ac) and for “5-sigma statistics' we require std(n)<0.1 so 
std(s)/(ac)=0.1=>0.95asqrt(nc)/(ac)=0.1 so c=0.95° 
n/0.1°–181. 

Another model to estimate the confidence in the call, and 
how many loci or SNPs must be measured to ensure a given 
degree of confidence, incorporates the random variable as a 
multiplier of amplification instead of as an additive noise 
Source, namely SaG1+C). Taking logs, log(s) log(a)+log(1+ 
C.). Now, create a new random variable Y=log(1+C) and this 
variable may be assumed to be normally distributed -NGO,O). 
In this model, amplification can range from very Small to very 
large, depending on O, but never negative. Therefore C. e-1: 
and S X, a(1C...). For notation, mean(s) and expecta 
tion value E(s) are used interchangeably 

E(S) = acn + ar X o) Cit. -- ar X o) = acn(1 + E(a)) 
i=1 ... i=1 ... cn 

To find E(O) the probability density function (pdf) must be 
found for C. which is possible since C. is a function of Y which 
has a known Gaussian pdf. p. (C) p. (Y)(dy/do). So: 

d 
2C-2 - : - = -- = P py(y) se OA and day (log(1+d) 1 + a 8 

and: 

1 : y - 1 -t: 1 2ca, a 2 
po (a) V. cale se 1 + a 

This has the form shown in FIG. 15 for O=1. Now, E(O) can be 
found by integrating over this pdf 

E(a) = ap (a)da 
which can be done numerically for multiple different O. This 
gives E(s) or mean(s) as a function of O. Now, this pdf can 
also be used to find var(s): 

var(s) = E(se - E(s)) 

(2. i=1 ... cn 

ar(X, 
ar. X o 2nto i=1 ... 

all top-an-a- X o) i=1 ... 

2 

a; - cine(a) 

X o) -- cin’ E(o)? 
i=1 ... cn 

X o) -- error) arena + cn(cn - 1)a; ai - 2nto i=1 ... 
= acn (E(a) + (cn - 1).E(aa) - 2cnE(a)’ + cnE(O)?) 
= ac'n' (E(a) + (cn - 1)E(aa) - cnE(a)) 

which can also be solved numerically using p(C) for mul 
tiple different O to get var(s) as a function of O. Then, we may 
take a series of measurements from a sample with a known 
number of locic and a known number of segments in and find 
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std(s)/E(s) from this data. That will enable us to compute a 
value for O. In order to estimate n, E(s)=nac(1+E(O)) so 

Sc 

ac(1 + E(a)) 

can be measured so that 

Stad(s) 
Stad(n) 

When Summing a sufficiently large number of independent 
random variables of 0-mean, the distribution approaches a 
Gaussian form, and thus s (and n) can be treated as normally 
distributed and as before we may use 5-sigma statistics: 

Stad(s) 
at to s0.1 Stad(i) = 

in order to have an error probability of 2normcdf(5,0,1)=2.7e 
7. From this, one can solve for the number of loci c. 
Sexing 

In one embodiment of the system, the genetic data can be 
used to determine the sex of the target individual. After the 
method disclosed herein is used to determine which segments 
of which chromosomes from the parents have contributed to 
the genetic material of the target, the sex of the target can be 
determined by checking to see which of the sex chromosomes 
have been inherited from the father: Xindicates a female, and 
Y indicates a make. It should be obvious to one skilled in the 
art how to use this method to determine the sex of the target. 
Validation of the Hypotheses 

In some embodiments of the system, one drawback is that 
in order to make a prediction of the correct genetic state with 
the highest possible confidence, it is necessary to make 
hypotheses about every possible states. However, as the pos 
sible number of genetic states are exceptionally large, and 
computational time is limited, it may not be reasonable to test 
every hypothesis. In these cases, an alternative approach is to 
use the concept of hypothesis validation. This involves esti 
mating limits on certain values, sets of values, properties or 
patterns that one might expect to observe in the measured data 
if a certain hypothesis, or class of hypotheses are true. Then, 
the measured values can tested to see if they fall within those 
expected limits, and/or certain expected properties or patterns 
can be tested for, and if the expectations are not met, then the 
algorithm can flag those measurements for further investiga 
tion. 

For example, in a case where the end of one arm of a 
chromosome is broken off in the target DNA, the most likely 
hypothesis may be calculated to be “normal” (as opposed, for 
example to “aneuploid’). This is because the particular 
hypotheses that corresponds to the true state of the genetic 
material, namely that one end of the chromosome has broken 
off, has not been tested, since the likelihood of that state is 
very low. If the concept of validation is used, then the algo 
rithm will note that a high number of values, those that cor 
respond to the alleles that lie on the broken off section of the 
chromosome, lay outside the expected limits of the measure 
ments. A flag will be raised, inviting further investigation for 
this case, increasing the likelihood that the true state of the 
genetic material is uncovered. 
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It should be obvious to one skilled in the art how to modify 

the disclosed method to include the validation technique. 
Note that one anomaly that is expected to be very difficult to 
detect using the disclosed method is balanced translocations. 
Application of the Method with Contaminated DNA 

In one embodiment of the system, genetic data from target 
DNA which has been definitely or possibly contaminated 
with foreign DNA can also be cleaned using the disclosed 
method. The concept outlined above, that of hypothesis vali 
dation, can be used to identify genetic samples that fall out 
side of expected limits; in the case of contaminated samples it 
is expected that this validation will cause a flag to be raised, 
and the sample can be identified as contaminated. 

Since large segments of the target DNA will be known from 
the parental genetic data, and provided the degree of contami 
nation is sufficiently low and sufficient SNPs are measured, 
the spurious data due to the foreign genetic material can be 
identified. The method disclosed herein should still allow for 
the reconstruction of the target genome, albeit with lower 
confidence levels. Provided that the level of contamination is 
sufficiently low, the hypothesis that is calculated to be most 
likely is still expected to correspond to the true state of the 
genetic material in the target DNA sample. 

It should be obvious to one skilled in the art how to opti 
mize these methods for the purpose cleaning genetic data 
contaminated with spurious signals due to foreign DNA. 
Example of Reduction to Practice 

In one embodiment of the system, the method described 
above can be implemented using a set of algorithms which 
will calculate the most likely identity of each SNP in a list of 
relevant SNPs, as well as a confidence level for each SNP call. 
Described here is one possible way to implement the method 
disclosed in this patent. FIG. 16 and FIG. 17 visually repre 
sent the breakdown of this implementation of the disclosed 
method, the input requirements and the format of the output. 
Note that the implementations discussed here were done 
using the computer program Matlab, and a familiarity with 
this product will facilitate the understanding of the examples. 

FIG.16 focuses on the input data (1601) and its format and 
requirements, as well as the output data (1605) and its format. 
Input to the algorithm consists of the measured data (1602), 
including input by the user, and existing data (1603) pre 
served in the database, that is consequently updated by the 
newly collected data. The measured data (MD, 1602) consists 
of the genetic data as measured for desired SNPs for the 
embryo, and the paternal and maternal alleles, as well as the 
accuracy, or confidence with which each of the alleles is 
known. The existing data (1603) consists of the population 
frequency data (FD), measurement bias data (BD), and cross 
over data (CD). 
The population frequency data (FD) contains the allele 

frequency (for each of the values A.C.T.G) for each of the 
SNPs available. These data can be previously known or mea 
Sured, and can be updated with newly collected data as 
described elsewhere in this document. 
Measurement bias data (BD) captures the bias of the mea 

Surement process towards certain values. For example, 
assuming the true value of the allele is X=A, and probability 
of the correct measurement is p, the distribution of the mea 
Sured value X is: 

A. C T G 

Probability Px pc pT PG 
probability with no bias p (1-p)/3 (1-p)/3 (1-p)/3 
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where p-p+p+p 1. If there is no bias of measurement 
towards any of the values then pp. p. (1-p)/3. This 
information can be discerned from empirical and theoretical 
knowledge about the mechanism of the measurement process 
and the relevant instruments. 

Crossover data (CD) consists of a database of genetic dis 
tances and crossover probabilities between pairs of Snips, 
collected from HAPMAP data. 

Together, (MD), (FD), (BD), (CD) make up the necessary 
input to the disclosed method (termed Parental Support, 
1604) algorithm. This algorithm (1604) then operates on the 
input data to generate the output data (1605), which describes 
the most likely “true value of the targets genetic data given 
the measured values, as well as the most likely origin of each 
SNP in terms of the parental alleles. 

FIG. 17 focuses on the structure of the algorithm itself 
(termed Parental Support) and how each of these input data 
are utilized by the algorithm. Working backwards: to find the 
most likely hypotheses it is necessary to calculate P(HIM) 
1707, the probability of the hypothesis given the measure 
ment, for all the possible hypotheses H. As described previ 
ously: 

heSH 

In order to find P(HIM) (1710), it is first necessary to find 
P(MIH) (1707), and P(H) (1708), for all hypotheses H. This 
allows the calculation of P(M), 1709 by the equation shown 
above. The probability of the hypothesis P(H) 1708 depends 
on how many crossovers are assumed and the likelihood of 
each of these crossovers (CD, 1704), as explained above. 

P(MIH) can be calculated using the following equation: 

as explained previously. 
P(t), 1706 is the frequency of a particular valuet for pater 

nal and maternal alleles and is derived from population fre 
quency data (FD, 1703). P(MIH&t), 1705 is the probability of 
correctly measuring the allele values of the embryo, the 
father, and the mother, assuming a particular “true value t. 
The measurement data and accuracy entered by the user (MD, 
1701), and the measurement bias database (BD, 1702) are the 
inputs required to calculate P(MIH&t), 1705. 
A more detailed description of the method is given forth 

with. Begin with SNPs R={r,..., r}, (a set ofk SNPs), and 
the corresponding measured identities of parents and embryo, 
M(elepp.m.m.), for k SNPs, identified with id's 
S1, ..., S. Where: 
e=(e.e. . . . , e1) is the measurement on one of the 

chromosomes of the embryo (they don't all have to come 
from the same parental chromosome) for all the SNPs 
e=(e.e22. . . . . e2) is the measurement on the other 

chromosome of the embryo 
p=(pp. . . . . p.) is the measurement on the FIRST 

chromosome of the father (all coming from the same chro 
OSO 

p(pp.,...,p) is the measurement on the SECOND 
chromosome of the father (all coming from the same chro 
mosome) 
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m (mm. ..., m) is the measurement on the FIRST 

chromosome of the mother (all coming from the same chro 
mosome) 
ma=(m,m-2. . . . . m2) is the measurement on the SEC 

OND chromosome of the mother (all coming from the same 
chromosome) 
One can also write M={M, .. 

pit.p2) 
The goal of the method is to determine the “true’ embryo 

value T=(E1.E2), i.e. the most likely case given the measure 
ment M, where: 
E=(E.E. . . . , E) is the measurement on the FIRST 

chromosome of the embryo, corresponding to the PATER 
NAL chromosome, Ele{p, p} 
EF(EE,..., E) is the measurement on the SECOND 

chromosome of the embryo, corresponding to the MATER 
NAL value, Ele{m.m., 
One can also write T-T, ..., T} where T, (EE). 
Effectively, the parental chromosome values(pp.m.m.) 

are being used as Support to check, validate and correct mea 
sured values of (ee), hence the term “Parental Support 
Algorithm”. 
To achieve this goal, all the possible hypotheses for the 

origin of embryo Values are developed and the most likely one 
is chosen, given the measurement M. The hypotheses space is 
S={H', ..., H}={set of all the hypotheses}, where each 
hypothesis is of the format H=(H, ... H) where H, is the 
“mini” hypothesis for SNP i, of the format H=(p, *.m.*) 
where p, *epp, and me{mm. There are 4 different 
“mini” hypotheses H, in particular: 
H,1:(ei.e.,)={(p.m.) or (m.pl.); H,2:(ei.e.)={(p. 
m2) or (m2.pl.)} 
H,3:(ei.e.,)={(p.m.) or (mp3)}: H4:(ei.e.)={(p2. 
m2) or (m2-p2)} 

In theory, S' can have q-4 different members to pick 
from, though later this space will be limited with a maximal 
number of crossovers of paternal and maternal chromosomes. 
The most likely hypothesis H* is chosen to be as: H=arg 

maxis P(HIM) 
For a particular H: 

• 3 M} where M. (e.e. 

PI) pH y PM PH). 
heSH 

P(HM) = 

So deriving for each hypothesis: 
(1) P(M/H) is the probability of measurement M given the 
particular hypothesis H. 
(2) P(H) is the probability of the particular hypothesis H. 
(3) P(M) is the probability of the measurement M. 
After deriving P(HIM) for all H, the one with the greatest 
probability is chosen. 
Deriving P(MIH) 

Since measurements on each SNP are independent, for 
M=(M, ... M) and the particular hypothesis H=(H, ...H.) 
on all k SNPs then: 

For the particular SNP r, derive P(MIH). For S2={A.C.T. 
G}X{A.C.T.G}X={A.C.T.G}X{A.C.T.G}, the space of all 
the possible values for “true’ parent values (PPM, 
M), by Bayes formula is: 
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Deriving P(M/H, & (P.P.M.M.)=t) 
M, (elepp.m.m2) is a given measurement on 

this SNP. 

T(E.E.P.P.M.M.) is the Supposed “true value, 
for t=(PPMM) and (EE) fixed from Tby hypoth 
esis. (E. is one of P, P E is one of M.M.) 

Given: 

p=P(accurately measuring the embryo value i.on SNPr) 
p=P(accurately measuring the father value ion SNPr) 
p=P(accurately measuring the mother value i.on SNP r) 

Perl e1 = Eir 
Pe. E.) = (eir f Er) to-air in er if Er 

= le=E * Perl + le+E 4 (1 - pp-1)* p(eir, Eir, r) 
= F(e1, Er, Perl, r) 

where p(eEr)=/3 if there is no measurement bias, other 
wise it can be determined from experimental data, Such as 
data from the Hapmap project. 
Deriving P((P.P.M.M.)=t) 

For t(t1, t2,tsta): 

Suppose there are n samples of (P, P.M.M.), all paternal 
and maternal values are assumed to be independent, and 
t(titats,t) fort, in A.C.T.G. 

To get a particular p-P(Pt), for t=A, assume that in 
absence of any data this probability could be anything 
between 0 and 1, so it is assigned a value of U(0,1). With the 
acquisition of data, this is updated with the new values and the 
distribution of this parameter becomes a beta distribution. 
Suppose that out of n observations of P1, there are h values 
P1=A, and w=(event P=A) and D-(data given). It is 
described in a prior section the form of the beta distribution 
B(O.B) with Oh+1, B=n-h--1 for p(w|Data) (see equation 
(8)). The expected value and variance of X-B(C.B) distribu 
tion are: 

WX = - - 
(a + p) (a + p + 1) 

So the posterior mean value of the parameter p-P 
(PAIData)=(h+1)/(n+2) 
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Similarly p(#(p,B)+1)/(n+2). . . . m (#(m-G)+ 
1)/(n+2), etc. Thus all the values p, . . . . m have been 
derived and: 

P(Pir, P2, Mir, M2) = (t1, t2, 13, 14)) = pin 4 p2n + m1 + m2-1: 

Deriving P(H) 
The probability of the hypothesis H=(H. . . . . H) with 

H. (p.m.) depends on the amount of chromosome cross 
over. For example, 

with P(crossover)=0 then P(H)=/4 and H=(pm) 
if p * in{(p11.p21, . . . ps1), (p12-p22. . . . . ps2), m* in 
{(m11.m21,..., ms1),(m12m22, ..., ms2)}, 0 otherwise 

with P(crossover)>0 it is important to incorporate the prob 
ability of crossover between each SNP. 

Hypothesis H consists of the hypothesis for paternal and 
maternal chromosomes for each SNP. p.*epp, and 
m*e{mm}, i.e. H=(H.H.) where H. (p. ... p.*), and 
H (m, ... m), which are independent. 
P(H)=P(H,)*P(H,). Suppose that SNP are ordered by 
increasing location, 

k 

P(H,) = II (PC, (l - ) + (1 - PC): I; 
i=2 

where PC, P(crossover(rr) i.e. probability of crossover 
somewhere between SNPs re-r, and I-1 if p, *p, * are 
coming both from p orp, and it is 0 otherwise. 
Deriving P(crossover (a,b)) 

Given SNPs a,b, at base locations ll, (given in bases), the 
probability of crossover is approximated as P(11)=0.5(1- 
exp(-2G (1.l.))) where G(1.l.) genetic distance in Morgans 
between locations ll. There is no precise closed form func 
tion for G but it is loosely estimated as G(11)=|l-l, le. 
A better approximation can be used by taking advantage of 
the HapMap database of base locations s, and distances G(s 
s) for i spanning over all locations. In particular, 

G(la le) = X G(si, sil), 
assisth, 

so it can be used in crossover probability. 
Deriving P(M) 
Once P(MIH) is known, P(H) can be found for all the 

different H in S. 

P(M) = X P(MH) P(H) 
HeSH 

A More Expedient Method to Derive the Hypothesis of Maxi 
mal Probability 

Given the limitation of computer time, and the exponential 
scaling of complexity of the above method as the number of 
SNPs increases, in Some cases it may be necessary to use 



US 8,682,592 B2 
45 

more expedient methods to determine the hypothesis of maxi 
mal probability, and thus make the relevant SNP calls. A more 
rapid way to accomplish this follows: 
From before: P(HIM)=P(MIH)*P(H)/P(M), argmax, 

P(HIM)=argmax, and P(MIH)*P(H)–argmax F(M,H), and 
the object is to find H. maximizing F(M,H). 

Suppose Me measurement on Snips S to k. He hy 
pothesis on snips S to k, and for shorts M. M. 
H. H. measurement and hypothesis on Snipk. As shown 
before: 

= P(M. H.) : P(M-1) | H1-1)) 

and also 

= PF(H-1, H.) : P(H I-1)) 

where 

1 - PC(Hi, H) H = H 
PF(Hi, H) = (Hi, H) { PC(Hi, H) H_1 + H. 

and PC(H-H) probability of crossover between H. H. 
So finally, for n snips: 

P(M. H.) : PF (Hi, H) 

therefore: F(M,H)=F(MH))=F(M- H.)*P 
(MIH)*PF(H.H.) 
Thus, it is possible to reduce the calculation on in Snips to the 
calculation on n-1 Snips. 

For H=(H. . . . H) hypothesis on n snips: 

max F(M,H) = max F(M. (H1-1), H.,) 
H (Hanii).hn) 

= maximax F(M., (H1-1), H,) 
Hn H(1-1) 

= maxG(M1), H.) 
H 
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-continued 

where 

G(M1), H) = max F(M). (H1-1), H.) 
Holin-1) 

= max F(M1-1), H1-1)): 
H1.n-1) 

maximax F(M1-1), (H1-2), H-1): 
H-1 Holin-2) 
PF(Hi, H) 

= P(MH) : max PF(Hi, H): 
2-1 

G(M1-1), H-) 

In Summary: 

max F(M. H) = max G(M1), H.,) H H 

where G can be found recursively: for i=2,... n. 

G(M1), H) = P(M. H.) : maxLPF(H-1, H.) : G(M11), H,-1) 
2-1 

and 

G(M11), H) = 0.25: P(MIH). 

The best hypothesis can be found by following the follow 
ing algorithm: 
Step 1: For I=1, generate 4 hypotheses for H, make 
G(MIH) for each of these, and remember G, G, G, G, 
Step 2: For I-2: generate 4 hypothesis for H, make 
G(M2H2) using the above formula: 

remember these new four G. 
Repeat step 2 for I-k with k, k +1 until kin: generate 4 
hypothesis for H. make G(MIH) 

and remember these four G. 
Since there are only four hypotheses to remember at any 

time, and a constant number of operations, the algorithm is 
linear. 
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As above: 

P(M) = P(M1) 

X P(M1) Hik)): P(Hi)) 
Holk) 

P(Mk Hk) X P(M(1-1) H1-1)): 
H H(1k-1) 
k 

P(H I-1): PF(H-1, H.) 

=XP Mk I Hk) W(M-1) | HK) 
H. 

where 

W(Mk-1) H) = X P(Mik-1) Holk-1)): P(Hik-1)): PF (Hi, H) 
Holk-1) 

W(M,H) can be solved by using recursion: 

W(M-1) H) = X P(M1 k-1) Holk-1)): 
Holk-1) 

y P(MHI) X P(Mik-2) H1-2)): 
H i. Hk- (1k-2) 

W(Mk-2) H-1) 

Therefore: 

X P(M-1 H-1): PF(H-1, H.) : W(M-2) H-1) 
Hk 

and 

W(M11) H) = X P(MHI): 0.25: PF(Hi, H) 
H 

The algorithm is similar to the case above, where i=2:n and 
in each step a new set of W(i) are generated until the final step 
yields the optimized W. 
Deriving the p. p. pp. pp. Values from d, d, h, pd.pd, ph 

For the purpose of explanation, this section will focus on 
the paternal diploid and haploid data, but it is important to 
note that maternal data can be treated similarly. Let: 
d, d allele calls on the diploid measurements 
h—allele call on the haploid measurement 
p. p probabilities of a correct allele call on the each of 

the diploid measurements 
p probability of a correct allele call on the haploid mea 

Surement 

These data should be mapped to the following input param 
eters for disclosed algorithm: 

p—allele corresponding to haploid cell and one of the 
diploid cells 

p—allele corresponding to the remaining diploid cell 
pi, p.2 probabilities of correct allele call 

Since h corresponds to d, then to find the value of p it is 
necessary to use hand d. Then p will automatically corre 
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48 
spond to d. Similarly, if h corresponds to d, then to find the 
value of p it is necessary to use h and d, and the p will 
correspond to d. 
The term “correspond' is used since it can mean either “be 

equal” or “originate with higher probability from depending 
on different measurement outcomes and population fre 
quency. 

The goal of the algorithm is to calculate probabilities of “true' 
allele values hidden beyond results of raw measurementh, d. 
d2, pi, p 1, p.2 and population frequencies. 
The basic algorithm steps are the following: 
(i) determine whetherh corresponds to di ord based on h, 
d, d2, p. p. p values and the population frequency 
data 

(ii) assign the allele calls to p and p, calculate the prob 
abilities p and p2 based on step (1) 

Assigningh to di or d2 
Establish two hypotheses: 
H. : h corresponds to d (h originates from d) 
H: h corresponds to da (h originates from d) 

The task is to calculate probabilities of these two hypotheses 
given the measurement M: 

(To simplify the text, these will be referred to as P(H/M) and 
P(H/M)) hereafter. 

In order to calculate these probabilities, apply the Bayesian 
rule: 

PHIM) = - in 

PHIM) = - in 

where P(M)=P(M/H)*P(H,)+P(M/H)*P(H,). Since 
hypotheses H1 and H2 are equally likely, P(H)=P(H)=0.5, 
therefore: 

P P(MH) (HIM) = . . . . . . . . . . . and P(MH) + P(MH) 

PM H P(H M) = (MH) 

In order to calculate P(M/H) and P(M/H), one must con 
sider the set of all possible values of diploid outcomes d and 
d. G2={AA.AC, ..., GG}, i.e. any combination of A.C.T.G, 
so called underlying states. When the hypotheses are applied 
to the underlying states (i.e. accompany the assumed value of 
h based on hypothesis H or H, to values d and d), the 
following tables of all possible combinations (states 
S={s1.s...., so) of “true values' H. D. and D for h, d and 
da, can be generated, respectively. These are listed here: 
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D 2 

Hypothesis H: Hypothesis H2: 
h = d S2= {AA, AC. . . . . GG2 h = d2 S2= {AA, AC. . . . . GGE 

State H D D2 State H D 

S1 A. A. A. S1 A. A. 
S2 A. A. C S2 C A. 
S3 A. A. T S3 T A. 
S4 A. A. G S4 G A. 
S5 C C A. S5 A. C 
Sé C C C Sé C C 
S7 C C T S7 T C 
S8 C C G S8 G C 
Sg T T A. Sg A. T 
SO T T C SO C T 
S11 T T T S11 T T 
S12 T T G S12 G T 
S13 G G A. S13 A. G 
S4 G G C S4 C G 
S5 G G T S5 T G 
Sé G G G Sé G G 

Since the “true values' H. D. and D are unknown, and only 
the raw measurement outcomes h, d, d. p. p. p. are 
known, the calculation of the P(M/H) and P(M/H) over the 
entire set S2 must be performed in the following manner: 

If, for the purpose of the calculation, one assumes that d and 
da, as well as p and pare independent variables, it can be 
shown that: 

P(M(d) D): P(D): P(D) 

Consider the first three terms under the last sum above: P(M 
(x)/X), for X in {h.d.d. 
The calculation of the probability of correct allele call 

(hitting the “true allele value') is based on measurement of 
outcome x given the true value of allele X. If the measured 
value x and the true value X are equal, that probability is p, 
(the probability of correct measurement). If X and X are 
different, that probability is (1-p)/3. For example, calculate 
the probability that the “true value C is found under the 
conditions that X-C, and the measured value is X=A. The 
probability of getting A is p. The probability of getting C, T 
or G is (1-p). So, the probability of hitting C is (1-p)/3, 
since one can assume that C, T and G are equally likely. 

If the indicator variable I is included in the calculation, 
where I =1 if x=X and I-0 if xzX, the probabilities are as 
follows: 

Now consider the last two terms in P(MIH). P(D) and P(D) 
are population frequencies of alleles A.C.T and G, that may 
be known from prior knowledge. 
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Consider the expression shown above for a particular state 
s, given the particular measurement M(h Ad=G.d C): 

Similarly, calculate (1) given the particular measurement 
(in this case M(h=Ad=G.d=C)) for remaining 15 states and 
sum over the set S.2. 

Now P(M/H) and P(M/H) have been calculated. Finally, 
calculate P(H/M) and P(H/M) as described before: 

P(HM) = P(MH) 
II" PMIH). PMI H.) 

PM H P(H M) = (MH) 

Assigning the Allele Calls and Corresponding Probabilities 
Now establish four different hypotheses: 

Ha: “true value” of p is A 
H2: “true value” of p is C 
H27: "true value” of p is T 
H2: “true value” of p is G 
and calculate P(H2/M), P(H2/M), P(H2/M), P(H2 / 
M). The highest value determines the particular allele call and 
corresponding probability. 

Since the origin of p is unknown (it is derived from d with 
probability of P(H/M) and from d with probability P(H/ 
M)), one must consider both cases that p allele originates 
from d or d. For Hypothesis H. applying Bayes rule, give: 

P(H/M) and P(H/M) have already been determined in 
step 1. By Bayes rule: 
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Since H implies that p originates from d: 

P(H.M/H2)=P(M(d)/DA)-I pa+(1-I-2)* 
(%)*(1-p), as described before. P(H,)=P(D-A)=fa 
(A), where fa(A) is obtained from population frequency 
data. 

Similarly, calculate P(H&H/M). 
P(H/M)=P(H&H,/M)+P(H&H/M), therefore the 
probability that p is equal to A has been calculated. Repeat 
the calculation for C.T. and G. The highest value will give the 
answer of pallele call and the corresponding probability. 
Assigning the Allele Call top (Allele Corresponding to the 
Haploid Cell and One of the Diploid Cells) 
As before, we establish four different hypotheses: 
H: “true value” of p is A 
H: “true value” of p is C 
H: “true value” of p is T 
H: “true value” of p is G 
and calculate P(H,L/M), 
P(H/M) 

Here is an elaboration of H. In the “true case” case, p. 
will be equal to A only if the haploid and the corresponding 
diploid cell are equal to A. Therefore, in order to calculate p 
and p, one must consider situations where haploid and cor 
responding diploid cell are equal. So, the hypothesis H. the 
“true value' of p is A and becomes H: the “true value” of 
the haploid cell and corresponding diploid cell is A. 

Since the origin of his unknown (it is derived from d, with 
probability of P(H/M) and from d with probability P(H/ 
M)), one must consider both cases, that hallele originates 
from d ord, and implement that in determination of p. That 
means, using Bayes rule: 

P(H/M), P(H/M), 

As before, P(H/M) and P(H/M) are known from previous 
calculations. 

P(H, MI Hida): P(Hida) 
P(H, M) 

P(H, Mf Hida) 

P(Ha H1, M) = 

= P(M(h)f H = A): P(M(d)f D = A) = 

= Ih-H: ph + (1 - h-H): (1 f3): (1 - ph): 

= d.1-D14: Pa1 + (1 - d 1-D1})} (1/3): (1 - Pd1), 

since H1 implies that p originates from d. P(H,) P(h= 
A)*P(D=A)=f(A)*f (A), where f(A) and f(A) are 
obtained from population frequency data. P(HM)=P(H.M/ 
H)*P(H,)+P(H.M/H)*P(H,)+P(H.M/H)*P 
(H)+P(H.M/H)*P(H,) 

Similarly, calculate P(H&H/M). 
P(H/M)=P(H&H/M)+P(H&H/M) and now we 
have calculated the probability that p is equal to A. Repeat 
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the calculation for C.T. and G. The highest value will give the 
answer of pallele call and corresponding probability. 
Example Input 
Two input examples are shown. The first example is of a set 

of SNPs with a low tendency to cosegregate, that is, SNPs 
spread throughout a chromosome, and the input data is shown 
in FIG. 21. The second example is of a set of SNPs with a high 
tendency to cosegregate, that is SNPs clustered on a chromo 
some, and the input data is shown in FIG.22. Both sets of data 
include an individual's measured SNP data, the individuals 
parents SNP data, and the corresponding confidence values. 
Note that this data is actual data measured from actual people. 
Each row represent measurements for one particular SNP 
location. The columns contain the data denoted by the column 
header. The key to the abbreviations in the column headers is 
as follows: 

family id=the unique id for each person (included for 
clerical reasons) 

Snp id=the SNP identification number 
e1, e2=the SNP nucleotide values for the embryo 
p1, p2=the SNP nucleotide values for the father 
m1, m2=the SNP nucleotide values for the mother 
pel, pe2 the measurement accuracy for ele2 
pp.1, pp2 the measurement accuracy for p1...p2 

Example Output 
The two examples of output data are shown in FIG. 23 and 

FIG. 24, and correspond to the output data from the data given 
in FIG. 21 and FIG. 22 respectively. Both tables show an 
individual’s measured SNP data, the individual’s parents 
SNP data, the most likely true value of the individual’s SNP 
data, and the corresponding confidences. Each row represents 
the data corresponding to one particular SNP. The columns 
contain the data denoted by the column header. The key to the 
abbreviations in the column headers is as follows: 

Snp id=the SNP identification number 
true value—the proposed nucleotide value for ele2 
true hyp=the hypothesis for the origin of e1, e2 
ee—the measured SNP nucleotide values for ele2 
pp=the measured SNP nucleotide values for p1...p2 
HypProb—the probability of the final hypothesis. There is 

only one number for the output, but due to the excel 
column structure, this number is replicated in all rows. 

Note that this algorithm can be implemented manually, or 
by a computer. FIG. 21 and FIG.22 show examples of input 
data for a computer implemented version of the method. FIG. 
23 shows the output data for the input data shown in FIG. 21. 
FIG.24 shows the output data for the input data shown in FIG. 
22. 

Simulation Algorithm 
Below is a second simulation which was done to ensure the 

integrity of the system, and to assess the actual efficacy of the 
algorithm in a wider variety of situations. In order to do this, 
10,000 full system simulations were run. This involves ran 
domly creating parental genetic data, emulating meiosis in 
silico to generate embryonic data, simulating incomplete 
measurement of the embryonic data, and then running the 
method disclosed herein to clean the simulated measured 
embryonic data, and then comparing the simulated cleaned 
data with the simulated real data. A more detailed explanation 
of the simulation is given below, and the visual representation 
of the flow of events is given in FIG. 18. Two different imple 
mentations of the theory were tested. A fuller explanation is 
given below. 
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Simulation Algorithms for DH and PS and Results 
For both algorithms, the initial input variables are: 
(i) the list of SNPs to test, 
(ii) the population frequency of the maternal (pop 

freqlistMM) and paternal (popfreqlistPP) chromo 
SOmeS, 

(iii) the probabilities of a correct allele call for haploid 
measurement (phpe), and for unordered diploid mea 
Surements (pd). 

These values should be fixed based on the results from 
empirical data (population frequency) on relevant SNPs, and 
from measuring instrumentation performance (ph.pdpe). 
The simulation was run for several scenarios such as most 
likely (informed), uniform (uninformed) and very unlikely 
(extreme case). 
Once the above static parameters are fixed, crossover prob 

abilities given the particular SNPs are the same for all the 
simulations, and will be derived ahead of the time given the 
databases for snip location(SNIPLOC NAME MAT) and 
genetic distance (HAPLOC NAME MAT). 
crossprob, snips=GetCrossProb(snips,SNIPLOC NAME 
MAT parameters.HAPLOC NAME MAT): 
Preliminary Simulation Loop 
The preliminary simulation loop is to demonstrate that the 

genetic data that will be used for the full simulation is realis 
tic. Steps 1 through 5 were repeated 10,000 times. Note that 
this simulation can be run for either or both parents; the steps 
are identical. In this case, the simulation will be run for the 
paternal case for the purposes of illustration, and the refer 
ences to FIG. 18 will also include the corresponding maternal 
entry in FIG. 18 in parentheses. This simulation was also run 
using Matlab. 
Step 1: Generate Original Parental Diploid Cells (P1, P2), 

P1, P2=Generate()riginalChromosomes(snips, pop 
freqlistPP): 1801 (1802) 

Generate original paternal cells depending on the popula 
tion frequency for each SNP for father cells. 
Step 2: Generate Haploid and Unordered Diploid Data for 
DHAlgo 

Simulate crossover of the parental chromosomes 1803 to 
give two sets of chromosomes, crossed over: P1C1, P2C1 and 
P1C2, P2C2: 1804 (1805). Pick one of the fatheralleles after 
the crossover 1806 (from the first set) for haploid allele HP 
1807 (1808) in this case P1 (since there is no difference which 
one), and mix up the order in the diploid alleles to get (D1P. 
D2P) 1807 (1808). 

HP-PickOne(P1C1.P2C1); 
D1 PD2P=Jumble(P1, P2). 

Step 3: Introduce Error to the Original Dataset in Order to 
Simulate Measurements 
Based on given probabilities of correct measurement (ph 
haploid, pd-diploid measurement), introduce error into the 
measurements to give the simulated measured parental data 
1811 (1812). 
hp=MakeError(HPph); 
d1p–MakeError(D1Ppd): 
d2p–MakeError(D2P.pd). 

Step 4: Apply DHAlgo to Get (p1.p2), (pp1 pp2) 
DHAlgo takes alleles from haploid cell and an unordered 

alleles from diploid cell and returns the most likely ordered 
diploid alleles that gave rise to these. DHAlgo attempts to 
rebuild (P1, P2), also returns estimation error for father (pp1, 
pp2). For comparison, the empirical algorithm that does 
simple allele matching is also used. The goal is to compare 
how much better is the disclosed algorithm, compared to the 
simple empirical algorithm. 
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p1, p2, pp 1, pp 2-DHAlgo(hp.dlp,d2p.phpd. Snips.pop 
freqlistPPDH): p.1s, p2s. pp.1s, pp2s=DHAlgo(hp, d1 p. 
d2p.phpd.snips, popfreqlistPPST); 
Step 5: Collect Statistics for the Run 
Compare (P1, P2) to derived (p1.p2). 

P1cmp(i,i), P2cmp(i,i)P1 prob(..i), P2prob(..i)P1mn(i), 
P2nm.(i)=DHSimValidate(P1-P2.p1, p.2.ppl. pp2); 

Note: (P1S.P2S.P1P.P2P.P1AP2A)=(I.e., 
(P2-p2}: Pe1.p2-place p2cc), where (P1-p} is binary indi 

cator array forestimation of DH algorithm accuracy for all the 
SNPs, similarly, for Ie 2. pp2 are probabilities of a 
correct allele call derived from the algorithm, and 
p1 mean(Ite), i.e. average accuracy for this run for 
p1. Similar for p2. 
Preliminary Simulation Results 
Ten thousand simulations were used to estimate 

the algorithm accuracy DHAccuracy. P1-mean(P1A,), 
DHAccuracy. P2-mean(P2A), which shows the overall accu 
racy of the DH algorithm from P1, P2. On an individual SNP 
basis, the average accuracy on each SNP SNPAcc.P1-mean 
(P1S) should agree with the average of the estimated prob 
ability of correctly measuring that SNP, SNPProb. P1 =mean 
(P2P), i.e. if the algorithm works correctly, the value for 
SNPAcc.P1should correspond closely to SNPProb.P1. The 
relationship between these two is reflected by their correla 
tion. 
The 10000 loops of the simulation were run for different 

setup scenarios: 
(1) The underlying population frequency was given by exist 

ing genotyping data which is more realistic, and uniform 
population frequencies where A.C.T.G have the same 
probability on each SNP. 

(2) Several combinations for measurement accuracy for hap 
loid and unordered diploid measurements (ph.pd). Varying 
assumptions were made; that the measurements are both 
very accurate (0.95, 0.95), less accurate (0.75, 0.75) and 
inaccurate or random (0.25, 0.25), as well as unbalanced 
combinations of (0.9.0.5), (0.5,0.9). What might be clos 
est to reality may be accuracies of approximately 0.6 to 0.8. 

(3) The simulation was run in all these cases for both the 
DHAlgorithm and simple matching STAlgorithm, in order 
to assess the performance of the disclosed algorithm. 

The results of all these runs are summarized in FIG. 25. 
The disclosed algorithm is performs better than the exist 

ing empirical algorithm in these simulations, especially for 
the realistic cases of non-uniform population frequency, and 
unbalanced or reduced probabilities of correct measure 
ments. It has also been confirmed that our estimates of the 
algorithm accuracy for individual SNPs are very good in 
these cases, since the correlation between the estimated accu 
racy of correct allele call and simulation average accuracy is 
around 99%, with average ratio of 1. 

In the most realistic case, for data population frequency 
and (ph.pd)=(0.6, 0.8), the average percent of correctly 
retrieved SNPs for (P1, P2) is (0.852, 0.816) in implementa 
tion 1, and (0.601, 0.673 in implementation 2. 

Note that for FIG.25 and FIG. 26 the rows beginning with 
"data use population frequency data was taken from empiri 
cal results, while the rows beginning with “uniform' assume 
uniform populations. 

It is important to note that in FIG. 25 and FIG. 26 the 
accuracy is defined as the average percent of SNPs where the 
correct SNP call was made and the correct chromosome of 
origin was identified. It is also important to note that these 
simulations reflect two possible implementations of the algo 
rithm. There may be other ways to implement the algorithm 
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that may give better results. This simulation is only meant to 
demonstrate that the method can be reduced to practice. 
Full Simulation Loop 

Steps 1-8 were repeated 10000 times. This is the simulation 
to test the full disclosed method to clean measured genetic 5 
data for a target individual using genetic data measured from 
related individuals, in this case, the parents. This simulation 
was run using Matlab. 
Step 1: Generate original parental diploid cells (P1, P2), (M1, 
M2) 

P1, P2=Generate()riginalChromosomes(snips, pop 
freqlistPP); (1801) 

M1M2=Generate()riginalChromosomes(snips, pop 
freqlistMM); (1802) 

Generate original parental cells depending on the popula 
tion frequency for each SNP for mother and father cells. 
Step 2: Crossover Parental Cells (P1C.P2C), (M1C.M2C) 
(1803) 

Generate two sets of paternal cells with crossovers: first to 20 
get (P1C1, P2C1) used in DHAlgo, and second time to get 
(P1C2.P2C2) used in PSAlgo. (1804) 

Generate two sets of maternal cells with crossovers: first to 
get (M1C1, M2C1) used in DHAlgo, and (M1C2.M2C2) used 
in PSAlgo. (1805) 25 

P1C1, P2C1=Cross(P1, P2, snips, fullprob); 
P1C2.P2C2=Cross(P1, P2, snips, fullprob); 
M1C1, M2C1=Cross(M1, M2, snips, fullprob): 
M1C2.M2C2=Cross(M1, M2, snips, fullprob): 

Step 3 Make Haploid Cell and Unordered Diploid Cells for 30 
DHAlgo (1806) 

Pick one of the sets of paternal cells (1804, first set) for 
haploid cell HP, and mix up the order in the diploid cell to get 
(D1PD2P) (1807). Do the same for mother cells (1805, first 
set) to get MH, (D1M.D2M). (1808). 35 
HP-PickOne(P1C1.P2C1); 
HM=PickOne(M1C1, M2C1); 
D1 PD2P=Jumble(P1, P2): 
D1M.D2M=Jumble(M1, M2); 

Step 4: Make Diploid Embryo Cell (1809) 40 
Pick one of the paternal cells (1804, second set) and one of 

the maternal cells (1805, second set) for embryo cell. Mix up 
the order for measurement purposes. 

E1=PickOne(P1C2.P2C2); 
E2=PickOne(M1C2, M2C2); 45 
E1.J.E.2JJumble(E1.E2): (1810) 

Step 5: Introduce Error to the Measurements (1811, 1812, 
1813) 

Based on given measurement error (ph-haploid cells, pd 
unordered diploid cells, pe-embryo cells), introduce error 50 
into the measurements. 

hp=MakeError(HPph); (1811) 
dlp=MakeError(D1Plpd); (1811) 
d2p–MakeError(D2P.pd); (1811) 
him-MakeError(HMph); (1812) 55 
dlm-MakeError(D1Mpd); (1812) 
d2m-MakeError(D2M.pd); (1812) 
e1=MakeError(E1.J.pe1); (1813) 
e2=MakeError(E2.J.pe2); (1813) 

Step 6: Apply DHAlgo to Get (p1.p2), (milm2), (pp1 pp2), 60 
(pm1pm2) 
DHAlgo takes a haploid cell and an unordered diploid cell 

and returns the most likely ordered diploid cell that gave rise 
to these. DHAlgo attempts to rebuild (P1C1, P2C1) for father 
and (M1C1.M2C1) for mother chromosomes, also returns 65 
estimation error for father (pp1pp. 2) and mother (pm1pm2) 
cells. 
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p1.p2.ppl. pp2=DHAlgo(hp.dlp,d2p. Snips.pop 

freqlistPP); (1814) 
m1m2pm1pm2-DHAlgo(hm.dllm,d2m, Snips, pop 

freqlistMM); (1815) 
Step 7: Apply PSAlgo to Get (DE1DE2) (1816) 
PSAlgo takes rebuilt parent cells (p1.p2.m.1m2) and unor 

dered measured embryo cell (e1, e2) to return most likely 
ordered true embryo cell (DE1DE2). PS Algo attempts to 
rebuild (E1.E2). 

DE1DE2.alldata=PSAlgo(snips.ele2.plp2.m.1m2.pe. 
pplpp2pm1pm2.parameters,crossprob.popfreqlistPPpo 
preqlistMM); 
Step 8: Collect Desired Statistics from this Simulation Run 
Get statistics for the run: simdata=SimValidate(alldata, 

DE1DE2.P1, P2,M1M2.E1.E2.p1.p2.m.1m2...ele2.pe.pe. 
pplpp2pm1pm2); 
Simulation Results 
Ten thousand simulations were run and the final estimates 

for the algorithm accuracy PSAccuracy. E1 =mean(E1A), 
PSAccuracy.E.2-mean(E2A), which tells us the overall accu 
racy of the PS algorithm from E1, E2 were calculated. On an 
individual SNP basis, the average accuracy on each SNP 
SNPAcc.E.1-mean(E1S) should agree with the average of the 
estimated probability of correctly measuring that SNP, 
SNPProb.E1 =mean(E2P), i.e. if the algorithm is written cor 
rectly, then SNPAcc.E.1 should be observed to correlate to 
SNPProb.E.1. The relationship between these two is reflected 
by their correlation. 

Ten thousand loops of the simulation has been run for 
different setup scenarios: 
(1) Underlying population frequency given by existing geno 

typing data which is more realistic, and uniform population 
frequencies where A.C.T.G have the same probability on 
each SNP. 

(2) Several combinations of measurement accuracy for hap 
loid, unordered diploid and embryo measurements (ph, pd. 
pe). A variety of accuracies were simulated: Very accurate 
(0.95, 0.95, 0.95), less accurate (0.75, 0.75, 0.75) and inac 
curate or random (0.25, 0.25, 0.25), as well as unbalanced 
combinations of(0.9,0.5,0.5), (0.5,0.9.0.9). What may be 
closest to reality is approximately (0.6,0.8, 0.8). 

(3) We ran the simulation in all these cases for both our 
PSAlgorithm and simple matching STPSAlgorithm, in 
order to assess the performance of the disclosed algorithm. 

The results of these runs are summarized in the FIG. 26. 
The disclosed algorithm is performs better than the exist 

ing empirical algorithm in these simulations, especially for 
the realistic cases of non-uniform population frequency, and 
unbalanced or reduced probabilities of correct measure 
ments. It has also been shown that the estimates of the algo 
rithm accuracy for individual SNPs are very good in these 
cases, since the correlation between the estimated accuracy of 
correct allele call and simulation average accuracy is around 
99%, with average ratio of 1. 

In the most realistic case, for data population frequency 
and (ph.pdpe)-(0.6, 0.8, 0.8), the average percent of cor 
rectly retrieved SNPs for (E1.E2) is (0.777, 0.788) in imple 
mentation 1 and (0.835, 0.828) in implementation 2. As men 
tioned above, the number denoting the average accuracy of 
algorithm refers not only to the correct SNP call, but also the 
identification of correct parental origin of the SNP. To be 
effective, an algorithm must return better results than the 
algorithm that simply accepts the data as it is measured. One 
might be Surprised to see that in some cases, the accuracy of 
the algorithm is lower than the listed accuracy of measure 
ment. It is important to remember that for the purposes of this 
simulation a SNP call is considered accurate only if it is both 
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called correctly, and also its parent and chromosome of origin 
is correctly identified. The chance of getting this correct by 
chance is considerably lower than the measurement accuracy. 
Laboratory Techniques 

There are many techniques available allowing the isolation 
of cells and DNA fragments for genotyping. The system and 
method described here can be applied to any of these tech 
niques, specifically those involving the isolation of fetal cells 
or DNA fragments from maternal blood, or blastocysts from 
embryos in the context of IVF. It can be equally applied to 
genomic data in silico, i.e. not directly measured from genetic 
material. 

In one embodiment of the system, this data can be acquired 
as described below. 
Isolation of Cells 

Adult diploid cells can be obtained from bulk tissue or 
blood samples. Adult diploid single cells can be obtained 
from whole blood samples using FACS, or fluorescence acti 
vated cell sorting. Adult haploid single sperm cells can also be 
isolated from sperm sample using FACS. Adult haploid single 
egg cells can be isolated in the context of egg harvesting 
during IVF procedures. 

Isolation of the target single blastocysts from human 
embryos can be done following techniques common in in 
vitro fertilization clinics. Isolation of target fetal cells in 
maternal blood can be accomplished using monoclonal anti 
bodies, or other techniques such as FACS or density gradient 
centrifugation. 
DNA extraction also might entail non-standard methods 

for this application. Literature reports comparing various 
methods for DNA extraction have found that in some cases 
novel protocols, such as the using the addition of N-lauroyl 
sarcosine, were found to be more efficient and produce the 
fewest false positives. 
Amplification of Genomic DNA 

Amplification of the genome can be accomplished by mul 
tiple methods including: ligation-mediated PCR (LM-PCR), 
degenerate oligonucleotide primer PCR (DOP-PCR), and 
multiple displacement amplification (MDA). Of the three 
methods, DOP-PCR reliably produces large quantities of 
DNA from small quantities of DNA, including single copies 
of chromosomes; this method may be most appropriate for 
genotyping the parental diploid data, where data fidelity is 
critical. MDA is the fastest method, producing hundred-fold 
amplification of DNA in a few hours; this method may be 
most appropriate for genotyping embryonic cells, or in other 
situations where time is of the essence. 

Background amplification is a problem for each of these 
methods, since each method would potentially amplify con 
taminating DNA. Very tiny quantities of contamination can 
irreversibly poison the assay and give false data. Therefore, it 
is critical to use clean laboratory conditions, wherein pre- and 
post-amplification workflows are completely, physically 
separated. Clean, contamination free workflows for DNA 
amplification are now routine in industrial molecular biology, 
and simply require careful attention to detail. 
Genotyping Assay and Hybridization 
The genotyping of the amplified DNA can be done by many 

methods including MOLECULAR INVERSION PROBES 
(MIPs) such as AFFMETRIX's GENFLEX Tag Array, 
microarrays such as AFFMETRIX's 500Karray or the ILLU 
MINA Bead Arrays, or SNP genotyping assays such as 
APPLIED BIOSYSTEMS's TAQMAN assay. The AFFME 
TRIX 500K array, MIPS/GENFLEX, TAQMAN and ILLU 
MINA assay all require microgram quantities of DNA, so 
genotyping a single cell with either workflow would require 
Some kind of amplification. Each of these techniques has 
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various tradeoffs interms of cost, quality of data, quantitative 
vs. qualitative data, customizability, time to complete the 
assay and the number of measurable SNPs, among others. An 
advantage of the 500K and ILLUMINA arrays are the large 
number of SNPs on which it can gather data, roughly 250, 
000, as opposed to MIPs which can detect on the order of 
10,000 SNPs, and the TAQMANassay which can detect even 
fewer. An advantage of the MIPs, TAQMAN and ILLUMINA 
assay over the 500K arrays is that they are inherently cus 
tomizable, allowing the user to choose SNPs, whereas the 
500K arrays do not permit such customization. 

In the context of pre-implantation diagnosis during IVF, 
the inherent time limitations are significant; in this case it may 
be advantageous to sacrifice data quality for turn-around 
time. Although it has other clear advantages, the standard 
MIPs assay protocol is a relatively time-intensive process that 
typically takes 2.5 to three days to complete. In MIPs, anneal 
ing of probes to target DNA and post-amplification hybrid 
ization are particularly time-intensive, and any deviation 
from these times results in degradation in data quality. Probes 
anneal overnight (12-16 hours) to DNA sample. Post-ampli 
fication hybridization anneals to the arrays overnight (12-16 
hours). A number of other steps before and after both anneal 
ing and amplification bring the total standard timeline of the 
protocol to 2.5 days. Optimization of the MIPs assay for 
speed could potentially reduce the process to fewer than 36 
hours. Both the 500Karrays and the ILLUMINA assays have 
a faster turnaround: approximately 1.5 to two days to generate 
highly reliable data in the standard protocol. Both of these 
methods are optimizable, and it is estimated that the turn 
around time for the genotyping assay for the 500 k array 
and/or the ILLUMINA assay could be reduced to less than 24 
hours. Even faster is the TAOMAN assay which can be run in 
three hours. For all of these methods, the reduction in assay 
time will result in a reduction in data quality, however that is 
exactly what the disclosed invention is designed to address. 
Some available techniques that are faster are not particularly 
high-throughput, and therefore are not feasible for highly 
parallel prenatal genetic diagnosis at this time. 

Naturally, in situations where the timing is critical, such as 
genotyping a blastocyst during IVF, the faster assays have a 
clear advantage over the slower assays, whereas in cases that 
do not have such time pressure, such as when genotyping the 
parental DNA before IVF has been initiated, other factors will 
predominate in choosing the appropriate method. For 
example, another tradeoff that exists from one technique to 
another is one of price versus data quality. It may make sense 
to use more expensive techniques that give high quality data 
for measurements that are more important, and less expensive 
techniques that give lower quality data for measurements 
where the fidelity is not critical. Any techniques which are 
developed to the point of allowing sufficiently rapid high 
throughput genotyping could be used to genotype genetic 
material for use with this method. 
Combinations of the Aspects of the Invention 
As noted previously, given the benefit of this disclosure, 

there are more aspects and embodiments that may implement 
one or more of the systems, methods, and features, disclosed 
herein. Below is a shortlist of examples illustrating situations 
in which the various aspects of the disclosed invention can be 
combined in a plurality of ways. It is important to note that 
this list is not meant to be comprehensive; many other com 
binations of the aspects, methods, features and embodiments 
of this invention are possible. 
One example is the system which may operate in an IVF 

laboratory (see FIG. 19) that would allow full genotyping of 
all viable embryos within the time constraints of the IVF 
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procedure. This would require a turn-around time from egg 
fertilization to embryo implantation of under three days. This 
system may consist of parental genetic samples 1901 from 
IVF user (mother) 1902 and IVF user (father) 1903 being 
analyzed at IVF lab 1904 using a genotyping system. It may 
involve multiple eggs that are harvested from the mother 1902 
and fertilized with sperm from the father 1903 to create mul 
tiple fertilized embryos 1905. It may involve a laboratory 
technician extracting a blastocyst for each embryo, amplify 
ing the DNA of each blastocyst, and analyzing them using a 
high throughput genotyping system 1906. It may involve 
sending the genetic data from the parents and from the blas 
tocyst to a secure data processing system 1907 which vali 
dates and cleans the embryonic genetic data. It may involve 
the cleaned embryonic data 1908 being operated on by a 
phenotyping algorithm 1909 to predict phenotype suscepti 
bilities of each embryo. It may involve these predictions, 
along with relevant confidence levels, being sent to the phy 
sician 1910 who helps the IVF users 1902 and 1903 to select 
embryos for implantation in the mother 1901. 

Another example could utilize a variety of genotyping 
measurement techniques in a way that would optimize the 
value of each. For example, a lab could use an technique that 
is expensive but can give high quality data in cases with low 
signal, such as APPLIED BIOSYSTEMS's TAQMANassay, 
to measure the target DNA, and use a technique that is less 
expensive but requires a greater amount of genetic material to 
give good quality data, such as AFFMETRIX's 500K Gene 
chip, or MIPs, to measure the parental DNA. 

Another example could be a situation in which a couple 
undergoing IVF treatment have eggs harvested from the 
woman, and fertilized with sperm from the man, producing 
eight viable embryos. A blastocyst is harvested from each 
embryo, and the genomic data from the blastocysts are mea 
sured using TAQMAN Genotyping Assay. Meanwhile, the 
diploid data is measured from tissue taken from both parents 
using MOLECULAR INVERSION PROBES. Haploid data 
from one of the man's sperm, and one of the woman's eggs is 
also measured using MIPs. The genetic data of the parents is 
used to clean the SNP data of the eight blastocysts. The 
cleaned genetic data is then used to allow predictions to be 
made concerning the potential phenotypes of the embryos. 
Two embryos are selected which have the most promising 
profile, and allowed to implant in the woman's uterus. 

Another example could be a situation where a pregnant 
woman whose husband has a family history of Tay-Sachs 
disease wants to know if the fetus she is carrying is genetically 
Susceptible, but she does not want to undergo amniocentesis, 
as it carries a significant risk of miscarriage. She has her blood 
drawn, some fetal DNA is isolated from her blood, and that 
DNA is analyzed using MIPs. She and her husband had 
already had their full genomic data analyzed previously and it 
is available in silico. The doctor is able to use the in silico 
knowledge of the parental genomes and the method disclosed 
herein to clean the fetal DNA data, and check if the critical 
gene that is responsible for Tay-Sachs disease is present in the 
genome of the fetus. 

Another example could be a situation where a 44-year old 
pregnant woman is concerned that the fetus she is carrying 
may have Downs Syndrome. She is wary of having an intru 
sive technique used for pre-natal diagnosis, given a personal 
history of miscarriages, so she chooses to have her blood 
analyzed. The health care practitioner is able to find fetal cells 
in the maternal blood sample, and using the method disclosed 
herein, together with the knowledge of the woman’s own 
genetic data, is able to diagnose for aneuploidy. 
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Another example could be a situation where a couple are 

undergoing IVF treatment; they have eggs harvested from the 
woman, and fertilized with sperm from the man, producing 
nine viable embryos. A blastocyst is harvested from each 
embryo, and the genomic data from the blastocysts are mea 
sured using an ILLUMINA BEAD ARRAY. Meanwhile, the 
diploid data is measured from tissue taken from both parents 
using MOLECULAR INVERSION PROBES. Haploid data 
from the father's sperm is measured using the same method. 
There were no extra eggs available from the mother, so bulk 
diploid tissue samples are taken from her own father and 
mother, and a sperm sample from her father. They are all 
analyzed using MIPs and the method disclosed herein is used 
to provide a genetic analysis for the mother's genome. That 
data is then used, along with the father's diploid and haploid 
data, to allow a highly accurate analysis of the genetic data of 
each of the blastocysts. Based on the phenotypic predictions, 
the couple chooses three embryos to implant. 

Another example could be a situation where a racehorse 
breeder wants to increase the likelihood that the foals sired by 
his champion racehorse become champions themselves. He 
arranges for the desired mare to be impregnated by IVF, and 
uses genetic data from the stallion and the mare to clean the 
genetic data measured from the viable embryos. The cleaned 
embryonic genetic data allows the breeder to find relevant 
genotypic-phenotypic correlations and select the embryos for 
implantation that are most likely to produce a desirable race 
horse. 

Another example could be a situation where a pregnant 
woman wants to know whether the fetus she is carrying is 
predisposed towards any serious illness. The father has since 
passed away, and so the haploid and diploid data generated 
from the father's brother and the father's father are used to 
help clean the genetic data of the fetus, measured from fetal 
cells gathered during fetal blood sampling. A company con 
tracted by the health care practitioner uses the cleaned fetal 
genetic data to provide a list of phenotypes that the fetus is 
likely to exhibit, along with the confidence of each prediction. 

Another example could be an amniocentesis lab that must 
occasionally contend with contaminated fetal genetic data 
due to poor laboratory techniques. The disclosed method 
could be used to clean the contaminated fetal genetic data 
using maternal and paternal genetic data. One could imagine 
a situation where a laboratory is able to cut costs by relaxing 
sterility procedures, knowing that the disclosed method 
would be able to compensate for an increased rate of contami 
nating DNA. 

Another example could be a situation in which a woman in 
her forties is undergoing IVF to get pregnant. She wants to 
screen the embryos to select the one(s) that are least likely to 
have a genetic illness, and are most likely to implant and carry 
to term. The IVF clinic she is using harvests a blastocyst from 
each of the viable embryos, and uses standard procedures to 
amplify the DNA, and measure key SNPs. The technician 
then uses the methods disclosed hereinto screen for chromo 
Somal imbalances, and also to find and clean the genetic data 
of the embryos to make predictions about the phenotypic 
predispositions of each embryo. 

Another example could be a situation where a pregnant 
woman has amniocentesis, and the genetic material in the 
fetal cells in the blood sample are used, along with the meth 
ods described hereinto screen for aneuploidy and other chro 
mosomal abnormalities. 
Miscellaneous Notes 

It is important to note that the method described herein 
concerns the cleaning of genetic data, and as all living crea 
tures contain genetic data, the methods are equally applicable 
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to any human, animal, or plant that inherits chromosomes 
from parents. The list of animals and plants could include, but 
is not limited to:gorillas, chimpanzees, bonobos, cats, dogs, 
pandas, horses, cows, sheep, goats, pigs, cheetahs, tigers, 
lions, salmon, sharks, whales, camels, bison, manatees, elk, 
Swordfish, dolphins, armadillos, wasps, cockroaches, worms, 
condors, eagles, sparrows, butterflies, Sequoia, corn, wheat, 
rice, petunias, cow's Vetch, Sun flowers, ragweed, oak trees, 
chestnut trees, and head lice. 
The measurement of genetic data is not a perfect process, 

especially when the sample of genetic material is Small. The 
measurements often containincorrect measurements, unclear 
measurements, spurious measurements, and missing mea 
surements. The purpose of the method described herein is to 
detect and correct some or all of these errors. Using this 
method can improve the confidence with which the genetic 
data is known to a great extent. For example, using current 
techniques, uncleaned measured genetic data from DNA 
amplified from a single cell may contain between 20% and 
50% unmeasured regions, or allele dropouts. In some cases 
the genetic data could contain between 1% and 99% unmea 
Sured regions, or allel dropouts. In addition, the confidence of 
a given measured SNP is subject to errors as well. 

In a case where the uncleaned data has an allele dropout 
rate of approximately 50%, it is expected that after applying 
the method disclosed herein the cleaned data will have correct 
allele calls in at least 90% of the cases, and under ideal 
circumstances, this could rise to 99% or even higher. In a case 
where the uncleaned data has an allele dropout rate of 
approximately 80%, it is expected that after applying the 
method disclosed herein the cleaned data will have correct 
allele calls in at least 95% of the cases, and under ideal 
circumstances, this could rise to 99.9% or even higher. In a 
case where the uncleaned data has an allele dropout rate of 
approximately 90%, it is expected that after applying the 
method disclosed herein the cleaned data will have correct 
allele calls in at least 99% of the cases, and under ideal 
circumstances, this could rise to 99.99% or even higher. In 
cases where a particular SNP measurement is made with a 
confidence rate close to 90%, the cleaned data is expected to 
have SNP calls with confidence rate of over 95%, and in ideal 
cases, over 99%, or even higher. In cases where a particular 
SNP measurement is made with a confidence rate close to 
99%, the cleaned data is expected to have SNP calls with 
confidence rate of over 99.9%, and in ideal cases, over 
99.99%, or even higher. 

It is also important to note that the embryonic genetic data 
that can be generated by measuring the amplified DNA from 
one blastomere can be used for multiple purposes. For 
example, it can be used for detecting aneuploides, uniparental 
disomy, sexing the individual, as well as for making a plural 
ity of phenotypic predictions. Currently, in IVF laboratories, 
due to the techniques used, it is often the case that one blas 
tomere can only provide enough genetic material to test for 
one disorder, Such as aneuploidy, or a particular monogenic 
disease. Since the method disclosed herein has the common 
first step of measuring a large set of SNPs from a blastomere, 
regardless of the type of prediction to be made, a physician or 
parent is not forced to choose a limited number of disorders 
for which to Screen. Instead, the option exists to screen for as 
many genes and/or phenotypes as the state of medical knowl 
edge will allow. With the disclosed method, the only advan 
tage to identifying particular conditions to screen for prior to 
genotyping the blastomere is that if it is decided that certain 
PSNPs are especially relevant, then a more appropriate set of 
NSNPs which are more likely to cosegregate with the PSNPs 
of interest, can be selected, thus increasing the confidence of 
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the allele calls of interest. Note that even in the case where 
SNPs are not personalized ahead of time, the confidences are 
expected to be more than adequate for the various purposes 
described herein. 

DEFINITIONS 

SNP (Single Nucleotide Polymorphism): A specific locus on 
a chromosome that tends to show inter-individual varia 
tion. 

To call a SNP to interrogate the identity of a particular base 
pair, taking into account the direct and indirect evidence. 

To call an allele: to call a SNP. 
To clean genetic data: to take imperfect genetic data and 

correct Some or all of the errors, using genetic data of 
related individuals and the method describe herein. 

Imperfect genetic data: genetic data with any of the follow 
ing: allele dropouts, unclear base pair measurements, 
incorrect base pair measurements, spurious signals, or 
missing measurements. 

Confidence: the statistical likelihood that the called SNP, 
allele, or set of alleles correctly represents the real genetic 
state of the individual. 

Multigenic: affected by multiple genes, or alleles. 
Noisy genetic data: incomplete genetic data, also called 

incomplete genetic data; 
Uncleaned genetic data: genetic data as measured, that is, 

with no method has been used to correct for the presence of 
noise in the raw genetic data; also called crude genetic data. 

Direct relation: mother, father, son, or daughter. 
Chromosomal Region: a segment of a chromosome, or a full 

chromosome. 
Parental Support: a name sometimes used for the disclosed 
method of cleaning genetic data. 

Section of a chromosome: a section of a chromosome that can 
range in size from one base pair to the entire chromosome. 

Section: a section of a chromosome. 
What is claimed is: 
1. An ex vivo method for determining a number of copies of 

a chromosome or chromosome segment of interest in the 
genome of an individual, the method comprising: 

using a single nucleotide polymorphism (SNP) genotyping 
array or high throughput DNA sequencing to measure 
genetic material and produce genetic data for some or all 
possible alleles at a plurality of at least 100 loci on the 
chromosome or chromosome segment of interest in the 
individual, wherein the genetic data is noisy due to a 
Small amount of genetic material from the individual; 
and wherein the Small amount of genetic material from 
the individual is from fifty or fewer of the individuals 
cells, 0.3 ng or less of the individual's DNA, extracellu 
lar DNA from the individual found in maternal blood, or 
combinations thereof; 

creating a set of one or more hypotheses specifying the 
number of copies of the chromosome or chromosome 
segment of interest in the genome of the individual; 

determining, on a computer, the probability of each of the 
hypotheses given the produced genetic data; and 

using the probabilities associated with each hypothesis to 
determine the most likely number of copies of the chro 
mosome or chromosome segment of interest in the 
genome of the individual. 

2. The method of claim 1, wherein the small amount of 
genetic material is from twenty or fewer of the individuals 
cells. 

3. The method of claim 2, wherein the small amount of 
genetic material is from one of the individual’s cell. 
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4. The method of claim 1, wherein the small amount of 
genetic material is from 0.3 ng or less of the individuals 
DNA. 

5. The method of claim 1, wherein the small amount of 
genetic material is from extracellular DNA from the indi 
vidual found in maternal blood. 

6. The method of claim 1, wherein the noisy data comprises 
allele drop out errors. 

7. The method of claim 1, wherein the noisy data comprises 
measurement bias. 

8. The method of claim 1, wherein the noisy data comprises 
incorrect measurements. 

9. The method of claim 1, wherein a confidence is com 
puted for the determination of the number of copies of the 
chromosome or chromosome segment of interest in the indi 
vidual’s genome. 

10. The method of claim 1, wherein the plurality of loci 
comprise SNPs. 

11. The method of claim 10, wherein the confidence that 
each SNP is correctly called is at least 95%. 

12. The method of claim 11, wherein the confidence that 
each SNP is correctly called is at least 99%. 

13. The method of claim 1, wherein the probability of each 
of the hypotheses is determined using data about the prob 
ability of chromosomes crossing over at different locations in 
the chromosome or chromosome segment of interest. 

14. The method of claim 13, wherein the maximum number 
of possible crossovers is 4. 

15. The method of claim 1, wherein the determination of 
the number of copies of the chromosome or chromosome 
segment of interest is used to make a clinical decision about 
the individual. 

16. The method of claim 15, wherein the individual(s) is 
one or more embryos, and wherein the method further com 
prises (i) using the determination of the number of copies of 
the chromosome or chromosome segment of interest in the 
one or more embryos to select an embryo for in vitro fertili 
zation, and (ii) performing in vitro fertilization with the 
selected embryo. 

17. The method of claim 1, wherein the individual is a 
fetus, and wherein the sample is a maternal blood sample 
comprising DNA from the fetus and DNA from the mother of 
the fetus. 

18. The method of claim 1, wherein the individual is a 
fetus, and wherein the method further comprises performing 
amniocentesis or chorion villus biopsy. 

19. The method of claim 1, wherein the individual’s 
genetic data has been obtained by amplifying and/or measur 
ing the individual’s genetic material using tools and/or tech 
niques selected from the group consisting of Polymerase 
Chain Reaction (PCR), Ligation-mediated PCR, degenera 
tive oligonucleotide primer PCR, Multiple Displacement 
Amplification, allele-specific amplification techniques, and 
combinations thereof, and wherein one or more of the indi 
vidual's genetic data has been measured using tools and or 
techniques selected from the group consisting of MOLECU 
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LAR INVERSION PROBES (MIPs) circularizing probes, 
other circularizing probes, Genotyping Microarrays, the 
TAQMAN SNP Genotyping Assay, other hydrolysis probes, 
the ILLUMINA Genotyping System, other genotyping 
assays, Sanger DNA sequencing, pyrosequencing, other 
methods of DNA sequencing, other high through-put geno 
typing platforms, fluorescent in-situ hybridization (FISH), 
and combinations thereof. 

20. The method of claim 1, wherein the individuals 
genetic data has been obtained by amplifying and/or measur 
ing the individual’s genetic material, and wherein the indi 
vidual’s genetic material is found in substances selected from 
the group consisting of the individual’s bulk diploid tissue. 
one or more diploid cells taken from the individual, one or 
more haploid cells taken from the individual, one or more 
blastomeres taken from the individual, one or more embryos 
created from a gamete from the individual, one or more blas 
tomeres taken from such an embryo, the individual's sperm, 
the individual's egg, the individual’s polar body, extra-cellu 
lar genetic material found on the individual, extra-cellular 
genetic material from the individual found in maternal blood, 
extracellular genetic material from the individual found in 
maternal plasma, cells from the individual found in maternal 
blood, genetic material known to have originated from the 
individual, and combinations thereof. 

21. The method of claim 1, wherein the chromosome of 
interest is selected from the group consisting of chromosome 
13, chromosome 18, chromosome 21, the X chromosome, the 
Y chromosome, and combinations thereof. 

22. The method of claim 1, wherein the chromosomal 
abnormality is selected from the group consisting of mono 
Somy, uniparental disomy, trisomy, other aneuploidies, 
unbalanced translocations, insertions, deletions, and combi 
nations thereof. 

23. The method of claim 1, wherein the method comprises 
determining whether the individual has Down syndrome, 
Klinefelters syndrome, or Turner syndrome. 

24. The method of claim 1, further comprising normalizing 
the genetic data for differences in measurement efficiency 
between the loci. 

25. The method of claim 1, further comprising: 
amplifying the genetic material of the target individual; 

and 
normalizing the genetic data for differences in amplifica 

tion and/or measurement efficiency between the loci. 
26. The method of claim 1, further comprising: 
amplifying the genetic material of the target individual; 

and 
normalizing the genetic data for differences in amplifica 

tion and/or measurement efficiency between the loci, 
chromosome segments, or chromosomes. 

27. The method of claim 1, wherein the probability of each 
of the hypotheses is determined without use of a reference 
sample. 


