Andrew D. Mathis

Andrew D. Mathis, PhD

Patent Agent | Biotechnology
617.646.8562 LinkedIn Profile


  • BS, Biochemistry, Brigham Young University
  • MS, Biochemistry, Brigham Young University
  • PhD, Cell and Molecular Biology, University of Texas Southwestern Medical Center
  • JD, Suffolk University Law School, 2025 Candidate

Key Technologies

  • Gene Editing
  • DNA Sequencing
  • Proteomics
  • Immunotherapy
  • CAR-T Cells
  • Antisense Oligonucleotides (ASOs)
  • Nanoparticles
  • Bioinformatics
  • Machine Learning
  • Molecular Biology
  • Systems Biology

Practice Groups

Admitted to Practice

  • US Patent and Trademark Office


  • Boston


Andrew Mathis assists the firm in biotechnology patent drafting, prosecution, and counseling. He works with clients in many technology areas, including cell therapy, protein biologics, gene editing, nanoparticles, antisense oligonucleotides, DNA sequencing, and bioinformatics. He has extensive knowledge in the areas of CRISPR interference, continuous culture, Illumina DNA sequencing, systems biology, molecular biology, and proteomics mass spectrometry. Andrew also has significant experience in computational biology and bioinformatics.

Prior to joining Wolf Greenfield, Andrew was a graduate student in Kimberly A. Reynolds’ laboratory at the University of Texas Southwestern Medical Center. His research focused on developing an assay for high-throughput, gradated knockdown of gene expression using CRISPR interference and next-generation sequencing. In addition to his lab work, Andrew was a volunteer reviewer for the Journal of Emerging Investigators.


  • Drafted patent applications related to technologies including CAR-T cell therapies, protein biologics, and DNA sequencing data analysis.
  • Prosecuted patent applications related to DNA sequencing data analysis, CAR-T cell therapies, protein biologics, nanoparticle therapies, genetically engineered crops, and antisense oligonucleotides.
  • Assisted in patent counseling including freedom to operate, patentability, non-infringement, and validity analysis.


  • Mathis, A.D.; Otto, R.M.; Reynolds K.A., A simplified strategy for titrating gene expression reveals new relationships between genotype, environment, and bacterial growth. Nucleic Acids Research 49.1 (2021): e6-e6.
  • Schober, A. F.; Mathis, A. D.; Ingle, C.; Park, J. O.; Chen, L.; Rabinowitz, J. D.; Junier, I.;  Rivoire, O.; Reynolds, K. A., A two-enzyme adaptive unit within bacterial folate metabolism., Cell Reports 2019, 27 (11), 3359-3370. E7.
  • Mathis, A. D.*; Naylor, B. C.*; Carson, R. H.; Evans, E.; Harwell, J.; Knecht, J.; Hexem, E.;  Peelor, F. F.; Miller, B. F.; Hamilton, K. L., Transtrum M. K., Bikman, B. T., Price, J.C., Mechanisms of in vivo ribosome maintenance change in response to nutrient signals. Molecular & Cellular Proteomics 2017, 16 (2), 243-254. *These authors contributed equally
  • Plimpton, R. L.; Cuellar, J.; Lai, C. W. J.; Aoba, T.; Makaju, A.; Franklin, S.; Mathis, A. D.;  Prince, J. T.; Carrascosa, J. L.; Valpuesta, J. M.; Willardson, B. M., Structures of the G beta-CCT and PhLP1-G beta-CCT complexes reveal a mechanism for G-protein beta-subunit folding and G beta gamma dimer assembly. Proceedings of the National Academy of Sciences USA 2015, 112(8), 2413-2418.
  • DeMille, D.; Badal, B. D.; Evans, J. B.; Mathis, A. D.; Anderson, J. F.; Grose, J. H., PAS kinaseis activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1  through the phosphorylation and activation of Pbp1. Molecular Biology of the Cell 2015, 26 (3), 569-582.
  • Weerasekara, V. K.; Panek, D. J.; Broadbent, D. G.; Mortenson, J. B.; Mathis, A. D.; Logan, G. N.; Prince, J. T.; Thomson, D. M.; Thompson, J. W.; Andersen, J. L., Metabolic-stress-induced  rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9. Molecular and Cellular Biology 2014, 34 (24), 4379-4388.
  • Grose, J. H.; Belnap, D. M.; Jensen, J. D.; Mathis, A. D.; Prince, J. T.; Merrill, B. D.; Burnett, S. H.; Breakwell, D. P., The genomes, proteomes, and structures of three novel phages that infect  the Bacillus cereus group and carry putative virulence factors. Journal of Virology 2014, 88 (20), 11846-11860.
  • DeMille, D.; Bikman, B. T.; Mathis, A. D.; Prince, J. T.; Mackay, J. T.; Sowa, S. W.; Hall, T. D.; Grose, J. H., A comprehensive protein–protein interactome for yeast PAS kinase 1 reveals direct  inhibition of respiration through the phosphorylation of Cbf1. Molecular Biology of the Cell 2014, 25 (14), 2199-2215.
  • Smith, R.; Mathis, A. D.; Ventura, D.; Prince, J. T., Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist’s point of view. BMC Bioinformatics 2014,15 (7), 1.


  • The outdoors
  • Board games
  • Evolutionary biology