Andrew D. Mathis

Andrew D. Mathis, PhD

(he/him/his)
Patent Agent | Biotechnology
617.646.8562 Andrew.Mathis@WolfGreenfield.com LinkedIn Profile

Education

  • BS, Biochemistry, Brigham Young University
  • MS, Biochemistry, Brigham Young University
  • PhD, Cell and Molecular Biology, University of Texas Southwestern Medical Center
  • JD, Suffolk University Law School

Key Technologies

  • Gene Editing
  • CRISPR
  • DNA Sequencing
  • Proteomics
  • Immunotherapy
  • CAR-T Cells
  • Antisense Oligonucleotides (ASOs)
  • Nanoparticles
  • Bioinformatics
  • Machine Learning
  • Molecular Biology
  • Systems Biology

Practice Groups

Admitted to Practice

  • US Patent and Trademark Office

Location

  • Boston

Overview

Andrew Mathis enjoys collaborating with clients to assist in developing and executing patent strategies that meet their needs. Andrew works in a wide variety of life sciences areas including enzyme/RNA engineering, next-generation sequencing, bioinformatics, machine learning/artificial intelligence, gene editing, vaccine design, immune therapy, cell therapy, antibodies, and molecular biology.

Andrew works with clients throughout the life sciences sector including academic institutions, research hospitals, start-ups, mid-sized biotech companies, and large pharmaceutical companies. He assists the firm in advising on a wide variety of IP issues including patent portfolio strategy, patent prosecution, patentability, freedom to operate, due diligence, licensing agreements, and trade secrets.

As part of his doctoral research, Andrew worked in the wet lab and the dry lab to develop a high-throughput assay for gradated knockdown of gene expression using CRISPR interference, next-generation sequencing, and bioinformatics analysis.


Experience

  • Drafted patent applications related to technologies including CAR-T cell therapies, protein biologics, and DNA sequencing data analysis.
  • Prosecuted patent applications related to DNA sequencing data analysis, CAR-T cell therapies, protein biologics, nanoparticle therapies, genetically engineered crops, and antisense oligonucleotides.
  • Assisted in patent counseling including freedom to operate, patentability, non-infringement, and validity analysis.

Publications

  • Mathis, A.D.; Otto, R.M.; Reynolds K.A., A simplified strategy for titrating gene expression reveals new relationships between genotype, environment, and bacterial growth. Nucleic Acids Research 49.1 (2021): e6-e6.
  • Schober, A. F.; Mathis, A. D.; Ingle, C.; Park, J. O.; Chen, L.; Rabinowitz, J. D.; Junier, I.;  Rivoire, O.; Reynolds, K. A., A two-enzyme adaptive unit within bacterial folate metabolism., Cell Reports 2019, 27 (11), 3359-3370. E7.
  • Mathis, A. D.*; Naylor, B. C.*; Carson, R. H.; Evans, E.; Harwell, J.; Knecht, J.; Hexem, E.;  Peelor, F. F.; Miller, B. F.; Hamilton, K. L., Transtrum M. K., Bikman, B. T., Price, J.C., Mechanisms of in vivo ribosome maintenance change in response to nutrient signals. Molecular & Cellular Proteomics 2017, 16 (2), 243-254. *These authors contributed equally
  • Plimpton, R. L.; Cuellar, J.; Lai, C. W. J.; Aoba, T.; Makaju, A.; Franklin, S.; Mathis, A. D.;  Prince, J. T.; Carrascosa, J. L.; Valpuesta, J. M.; Willardson, B. M., Structures of the G beta-CCT and PhLP1-G beta-CCT complexes reveal a mechanism for G-protein beta-subunit folding and G beta gamma dimer assembly. Proceedings of the National Academy of Sciences USA 2015, 112(8), 2413-2418.
  • DeMille, D.; Badal, B. D.; Evans, J. B.; Mathis, A. D.; Anderson, J. F.; Grose, J. H., PAS kinaseis activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1  through the phosphorylation and activation of Pbp1. Molecular Biology of the Cell 2015, 26 (3), 569-582.
  • Weerasekara, V. K.; Panek, D. J.; Broadbent, D. G.; Mortenson, J. B.; Mathis, A. D.; Logan, G. N.; Prince, J. T.; Thomson, D. M.; Thompson, J. W.; Andersen, J. L., Metabolic-stress-induced  rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9. Molecular and Cellular Biology 2014, 34 (24), 4379-4388.
  • Grose, J. H.; Belnap, D. M.; Jensen, J. D.; Mathis, A. D.; Prince, J. T.; Merrill, B. D.; Burnett, S. H.; Breakwell, D. P., The genomes, proteomes, and structures of three novel phages that infect  the Bacillus cereus group and carry putative virulence factors. Journal of Virology 2014, 88 (20), 11846-11860.
  • DeMille, D.; Bikman, B. T.; Mathis, A. D.; Prince, J. T.; Mackay, J. T.; Sowa, S. W.; Hall, T. D.; Grose, J. H., A comprehensive protein–protein interactome for yeast PAS kinase 1 reveals direct  inhibition of respiration through the phosphorylation of Cbf1. Molecular Biology of the Cell 2014, 25 (14), 2199-2215.
  • Smith, R.; Mathis, A. D.; Ventura, D.; Prince, J. T., Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist’s point of view. BMC Bioinformatics 2014,15 (7), 1.

Interests

  • The outdoors
  • Board games
  • Evolutionary biology